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A mis padres, por su amor incondicional y por acompañarme con su apoyo y
ejemplo en cada etapa de mi vida.

G.V.Z.

A mis padres, gracias por ser el mejor ejemplo en todo sentido.
F.S.R.

Preámbulo

Este libro realiza un primer conjunto de propuestas orientadas a la construcción de
trayectorias suaves para entornos euclidianos tridimensionales. Dichas trayectorias
se emplean con el objetivo de proporcionar una guía para el seguimiento de vuelo
para vehículos aéreos no tripulados (UAV o unmaned aerial vehicle en inglés, de
donde vienen sus siglas ) con características no-holonómicas (aviones de ala fija).
Las trayectorias desarrolladas buscan reducir posiblesmovimientos bruscos durante
el vuelo de este tipo de aeronaves. En este marco, en el libro se aborda diferentes
temáticas, incluyendo las siguientes:

· Curvas suaves
· Curvas Bézier
· Curvas clotoides 3D
· Trayectorias suaves 3D
· Optimización multiobjetivo

La teoría y matemática desarrollada y propuesta en este libro intenta ser simple y
de fácil entendimiento. En este sentido, se trabaja un nivel matemático razonable-
mente simple,confiando en la intuición del lector. Finalmente, se presenta diversos
experimentos que han probado de forma satisfactoria los algoritmos planteados, por
medio de plataforma de programación y cálculo numérico MATLABTM 1.

El libro presenta un enfoque académico apropiado para la introducción y el estudio
de la planificación de trayectoria suave 3D, para ingenieros que buscan alcanzar

1Matlab es una marca registrada de Math Works, Inc.
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nuevos entendimientos y métodos en esta rama de la ciencia en automatización y
robótica.

Los contenidos de este libro están fuertemente ligados a 2 trabajos doctorales, que
fueron realizados en la Universidad Politécnica de Valencia (UPV), en el Instituto
de Automática e Informática Industrial (ai2), y en el Departamento de Ingeniería de
Sistemas y Automática (DISA).

Es importante destacar y resaltar el apoyo brindado por la Pontificia Universidad
Católica del Ecuador - Sede Ambato, ya que sin su soporte no habría sido posible
culminar la publicación de este trabajo.Por este motivo, les extendemos nuestro sin-
cero sentimiento de agradecimiento y estima.

Finalmente, es importante resaltar que este libro presenta el primer volumen de
nuestro trabajo. De modo que, en el segundo volumen se presentará contribucio-
nes orientadas al desarrollo algorítmico, matemático y experimental implicado en la
planificación de trayectoria suave 3D.
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1 Introducción

En los últimos años se han producido diversas e importantes aplicaciones que bus-
can completar la tarea de planificación de trayectoria suave y navegación aérea en el
espacio tridimensional 3D. De manera similar, se ha desarrollado diversos e impor-
tantes avances prácticos en el desarrollo de UAV (vehículos aéreos no tripulados o
drones), así como en la navegación autónoma,que han sido presentados y aceptados
en la comunidad científica. De ahi que, en la actualidad, debido a la transforma-
ción digital y la automatización, el estudio y la investigación de UAV adquieren una
relevancia estratégica por su impacto en diversos ámbitos.Entre estos avances,vale
señalar aquellos enfocados en la competitividad, por medio de innovaciones en in-
teligencia artificial, sensores, navegación autónoma y eficiencia energética, que han
posicionado a países y empresas a la vanguardia de la industria 4.0.

En este contexto, el impacto económico relacionado con esta tecnología implica la
generación de empleos en sectores emergentes, enfocados en pilotos, desarrollado-
res de software o analistas de datos. Estos aspectos fortalecen las cadenas de valor
relacionadas con la manufactura y los servicios. Por este motivo, invertir en tecnolo-
gía UAV no solo optimiza procesos críticos, sino que también impulsa la soberanía
tecnológica y la solución de los desafíos sociales y ambientales. Ahora bien, dicho
propósito requiere de la colaboración de gobiernos, academia y sector privado con
el objetivo de maximizar beneficios y mitigar riesgos.

1.1 Aplicaciones UAV

Los avances y aportes científicos relacionados directamente con el desarrollo deUAV
son amplios y relevantes. A continuación, se describe de forma breve un conjunto

3
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de trabajos disponibles. Uno de ellos, el trabajo realizado por Niven [1],], detalla el
desarrollo de un UAV de ala fija construido con materiales compuestos (fibra de
carbono y espuma de PVC). Este diseño integra una cámara multiespectral con el
objetivo de completar misiones de mapeo aéreo.

El trabajo presentado por Esakki aprovecha las técnicas de fabricación aditiva (AM)
para la fabricación de un cuerpo unificado del bastidor de un quadrotor para mi-
nimizar el tiempo de montaje [2]. Por otra parte, Chung [3] describe la propuesta
de un vehículo híbrido que combina despegue vertical (VTOL) con vuelo eficiente
en crucero. Este prototipo usa motores eléctricos y una célula de combustible de hi-
drógeno, alcanzando 120 km de autonomía. Este diseño y su posterior fabricación
han generado diferentes resultados atractivos en cuanto a la propulsión eléctrica, lo
que ha permitido definir los requisitos de rendimiento, incluyendo la velocidad de
pérdida, la velocidad máxima, la altitud de crucero y el radio y la velocidad de giro.
Además, la carga alar y la carga de potencia asociada se obtienen a partir de los re-
quisitos de rendimiento. De forma similar, el trabajo presentado por Yuan describe
el diseño y construcción de un dron de tipo cuadricóptero, para lo cual se utiliza di-
ferentes componentes comerciales de bajo costo y que posee una capacidad de carga
útil de hasta 500g con una autonomía de 15 minutos. [4].

En Mingjie [5] ] se sintetiza el diseño típico de los UAV de ala fija VTOL en modo de
vuelo plano. A la vez, se realiza una breve descripción de las diferencias en cuanto al
modo de despegue y potencia. Por otro lado, Hakim [6] presenta estudio y desarro-
llo de un UAV de ala fija para realizar tareas implicadas en el proceso de vigilancia,
cartografía y lanzamiento. Como resultado de este proceso de cartografía, se gene-
ra datos fotográficos que se convierten en un mapa ortofotográfico. En cambio, el
estudio presentado por Yixuan describe el diseño y la fabricación de un UAV renta-
ble para fines logísticos, construido principalmente con materiales de madera y con
capacidad de carga útil de hasta 1.000g a una altitud de 40 m. [7].

El trabajo presentado por Gu en [8]describe el desarrollo integral de un sistema de
tipo UAV VTOL, desde los aspectos que incluyen el diseño y la implementación de
la aeronave, la integración de los dispositivos de a bordo, el soporte de la estación de
tierra y la comunicación a larga distancia. Además, incluye el análisis aerodinámico,
el diseño mecánico y el desarrollo del controlador. Por último, este desarrollo se

4
dentro del entorno; tal como se ilustra en la Figura 1.

Figura 1: Ejemplo de escenario de vuelo con obstáculos.

La planificación de trayectoria determina una sucesión de configuraciones especí-
ficas que permiten trasladar al robot desde un estado inicial hasta un estado final.
Se describe como estado a la descripción de la posición y orientación del robot, en
referencia a un marco absoluto expresado por la combinación de las coordenadas
cartesianas [14, 15, 16] del centro de gravedad del robot y la orientación angular
desde su eje principal.

Este campo de estudio específico se encuentra enmarcado por la robótica móvil [17,
18, 19], y se resuelve con el apoyo de la automatización de sistemas [20, 21, 22]. Para
ello, se requiere de un procesamiento amplio de volúmenes de información, pro-
veniente de sensores y actuadores. En consecuencia, la capacidad computacional es
un requerimiento relevante, pues se engloba dentro de la categoría de problemas de
programación de naturaleza NP–completo [23, 24, 25].

En este contexto, resulta necesario estudiar y proponer nuevos algoritmos que dis-
minuyan el esfuerzo computacional para la planificación de trayectoria, que trans-
formen órdenes de alto nivel en comandos de movimiento de bajo nivel, ejecutables
por el robot.

6



19

de trabajos disponibles. Uno de ellos, el trabajo realizado por Niven [1],], detalla el
desarrollo de un UAV de ala fija construido con materiales compuestos (fibra de
carbono y espuma de PVC). Este diseño integra una cámara multiespectral con el
objetivo de completar misiones de mapeo aéreo.

El trabajo presentado por Esakki aprovecha las técnicas de fabricación aditiva (AM)
para la fabricación de un cuerpo unificado del bastidor de un quadrotor para mi-
nimizar el tiempo de montaje [2]. Por otra parte, Chung [3] describe la propuesta
de un vehículo híbrido que combina despegue vertical (VTOL) con vuelo eficiente
en crucero. Este prototipo usa motores eléctricos y una célula de combustible de hi-
drógeno, alcanzando 120 km de autonomía. Este diseño y su posterior fabricación
han generado diferentes resultados atractivos en cuanto a la propulsión eléctrica, lo
que ha permitido definir los requisitos de rendimiento, incluyendo la velocidad de
pérdida, la velocidad máxima, la altitud de crucero y el radio y la velocidad de giro.
Además, la carga alar y la carga de potencia asociada se obtienen a partir de los re-
quisitos de rendimiento. De forma similar, el trabajo presentado por Yuan describe
el diseño y construcción de un dron de tipo cuadricóptero, para lo cual se utiliza di-
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útil de hasta 500g con una autonomía de 15 minutos. [4].
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estudio presentado por Yixuan describe el diseño y la fabricación de un UAV renta-
ble para fines logísticos, construido principalmente con materiales de madera y con
capacidad de carga útil de hasta 1.000g a una altitud de 40 m. [7].

El trabajo presentado por Gu en [8]describe el desarrollo integral de un sistema de
tipo UAV VTOL, desde los aspectos que incluyen el diseño y la implementación de
la aeronave, la integración de los dispositivos de a bordo, el soporte de la estación de
tierra y la comunicación a larga distancia. Además, incluye el análisis aerodinámico,
el diseño mecánico y el desarrollo del controlador. Por último, este desarrollo se
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valida por medio de experimentos aerodinámicos relacionados con la estabilidad de
vuelo, la resistencia y la autonomía deseada.

Chipade [9] expone el diseño conceptual y la demostración de vuelo de prueba de
un novedoso UAV biplano cuadricóptero de paso variable. Este diseño combina las
capacidades de despegue y aterrizaje vertical (VTOL) y de planeo de un cuadricóp-
tero con las características de autonomía, resistencia y alta velocidad de crucero de
una aeronave de ala fija. Además, se describe una misión de transporte y entrega de
6 kg de carga útil a un destino situado a 16 km del punto de origen.

Oliveira [10] diseña e implementa unaplataformadeprototipado rápidomultivehícu-
lo. El objetivo del trabajo es apoyar al desarrollo y las pruebas de control y navega-
ción para UAV. De ahí que, la arquitectura de hardware concebida para el entorno
de prototipado incluya un sistema óptico de captura de movimiento y un conjunto
de ordenadores externos que gestionan la comunicación entre sistemas y ejecutan
programas de usuario para varios quadrotors.

En estos trabajos, se puede apreciar una amplia difusión de las aplicaciones de UAv
para el mercado. Este hecho ha permitido el desarrollo de algoritmos cada vez más
rápidos con respuestas robustas.

Por otro lado, como se detalla en este libro, el uso y la aplicación de las metodologías
revisadas permite asimilar de forma clara los conceptos implicados en la resolución
del problema de planificación de trayectorias suaves. De esta manera, se intenta al-
canzar un aprendizaje continuo, con el apoyo de diversos experimentos prácticos en
diferentes escenarios.

1.2 Planificación de trayectoria

El problema de la planificación de trayectorias puede ser definido como la determi-
nación de un camino por el que un robotmóvil se desplaza. El objetivo es determinar
el conjunto de espacios libres de colisión dentro de un ambiente o entorno de trabajo
(es decir, el espacio euclidiano definido enR2 oR3), en el que se han ubicado diversos
obstáculos [11, 12, 13]. ]. El robot inicia su trayectoria desde un punto de este espacio
y debe alcanzar un punto final, evitando los diversos obstáculos que se encuentran
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dentro del entorno; tal como se ilustra en la Figura 1.

Figura 1: Ejemplo de escenario de vuelo con obstáculos.

La planificación de trayectoria determina una sucesión de configuraciones especí-
ficas que permiten trasladar al robot desde un estado inicial hasta un estado final.
Se describe como estado a la descripción de la posición y orientación del robot, en
referencia a un marco absoluto expresado por la combinación de las coordenadas
cartesianas [14, 15, 16] del centro de gravedad del robot y la orientación angular
desde su eje principal.

Este campo de estudio específico se encuentra enmarcado por la robótica móvil [17,
18, 19], y se resuelve con el apoyo de la automatización de sistemas [20, 21, 22]. Para
ello, se requiere de un procesamiento amplio de volúmenes de información, pro-
veniente de sensores y actuadores. En consecuencia, la capacidad computacional es
un requerimiento relevante, pues se engloba dentro de la categoría de problemas de
programación de naturaleza NP–completo [23, 24, 25].

En este contexto, resulta necesario estudiar y proponer nuevos algoritmos que dis-
minuyan el esfuerzo computacional para la planificación de trayectoria, que trans-
formen órdenes de alto nivel en comandos de movimiento de bajo nivel, ejecutables
por el robot.
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1.3 Planificación de trayectoria discreta y continua

El tratamiento del entorno de trabajo puede ser abordado a través de 2 metodolo-
gías fundamentales, que implican el tratamiento del espacio euclidiano como infor-
mación contínua o discreta [26, 27]. Independiente de la metodología de trabajo, el
objetivo es determinar de 2 conjuntos de información dentro del entorno de trabajo,
siendo:

1. El conjunto de los espacios por los que el robot móvil no puede moverse (es decir,
los espacios ocupados por diversos obstáculos)

2. El conjunto de espacios libres de colisión (es decir, los espacios por donde el robot
puede moverse).

Para la determinación de estos conjuntos, una alternativa de estudio viable se enfoca
en el análisis geométrico del entorno de trabajo [28, 29, 30]

La Planificación de trayectoria discreta [31, 32, 33] construye mallas con una forma
definida dentro del entorno de trabajo, mientras que la planificación de trayecto-
ria continua [34, 35, 36], recurre a los números pseudo aleatorios para determinar
la existencia de obstáculos o espacios libres. Entonces, a partir de la definición del
conjunto de espacios libres, se construyen trayectorias navegables por el robot.

El conjunto continuo de puntos libres de colisión, unidos a través de líneas rectas,
constituye las trayectorias que el robot puede seguir para alcanzar su objetivo. Ahora
bien, en muchos casos esta posible trayectoria implica giros bruscos a lo largo del
entorno de trabajo. Por lo que, es importante destacar que solamente un robot de
características holonómicas es capaz de completar esta clase de trayectorias.

1.4 Planificación de trayectorias suaves

El objetivo de la Planificación de trayectorias suaves [37, 38, 39] es la construcción
de curvas continuas, es decir, líneas en las que la sucesión de puntos cambia de di-
rección de forma que el vector tangente tuerce su dirección sin formar aristas. En
geometría diferencial, el vector tangente es el vector velocidad de la curva, que indi-
ca su dirección de movimiento. En específico, los robots que poseen características
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no-holonómicas [40, 41, 42], requieren esta clase de curvas suaves, pues carecen de
las habilidades necesarias para realizar maniobras bruscas, ya sea en tierra o en el
aire.

Es importante resaltar que este libro desarrolla diferentes propuestas para la crea-
ción y construcción de curvas suaves, que sirven como aproximaciones a trayecto-
rias suaves, navegables por UAV de características no-holonómicas, específicamen-
te, aviones de ala fija.

El libro se organiza en 4 capítulos, donde el Capítulo 1, realiza una breve introduc-
ción de la temática de planificación de trayectoria. El Capítulo 2 describe una pri-
mera aproximación de curva suaves a través de Bézier hacia las curvas clotoides.
El Capítulo 3, propone una construcción de trayectorias suaves, tomando en cuenta
las características restrictivas de maniobrabilidad de los UAV. Finalmente, en el Ca-
pítulo 4, se recurre al concepto del problema de optimización multiobjetivo para la
construcción de curvas suaves y su aproximación hacia las trayectorias suaves.
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02
Trayectorias de vuelo suaves 3D, 
y su aproximación Bézier hacia 
las curvas Clotoides 3D

RESUMEN

Este capítulo realiza el estudio de matemático y metodológico de las curvas en el 
espacio euclidiano o 3D. Además desarrolla un breve estudio de las curvas Bézier y 
las curvas clotoides. En especial, se enfoca en la definición de las curvas clotoides, 
sus características y alcances. El objetivo es desribir brevemente la construcción de
trayectorias suaves, a partir de las curvas suaves.
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RESUMEN

Este capítulo realiza el estudio de matemático y metodológico de las curvas en el 
espacio euclidiano o 3D. Además desarrolla un breve estudio de las curvas Bézier y 
las curvas clotoides. En especial, se enfoca en la definición de las curvas clotoides, 
sus características y alcances. El objetivo es desribir brevemente la construcción de
trayectorias suaves, a partir de las curvas suaves.

2.1 Introducción

El área de los vehículos aéreos no tripulados (UAV) ha evolucionado de forma im-
portante en los últimos años. Los UAV fueron inicialmente concebidos para fines
militares, pero hoy en día existe un gran número de aplicaciones comerciales [43,
44].

No obstante, una de las principales desventajas de los UAV es que sus sistemas de
control son no lineales y algunos de ellos también tienen restricciones no-holonómicas
para la navegación en condiciones normales.

Para controlar estos vehículos, a menudo se utiliza curvas espaciales para generar
trayectorias suaves. Ahora bien, la mayoría de estas curvas no son intuitivas, ya que,
no tienen en cuenta las restricciones del vehículo y/o requieren procedimientos de
optimización, que pueden no ser viables para aplicaciones en tiempo real. En este
sentido, una amplia variedad de tipos de curvas, como las de Bézier o spline polinó-
micas han sido utilizadas con el objetivo de alcanzar una posición determinada en
el espacio euclidiano 2D o 3D. [45, 46, 47]

El análisis geométrico, en el contexto de las curvas, se representa por medio de un
mapa continuo en el espacio dimensional (desde la dimensión 1 hasta la dimensión
n), cuyo dominio tiene derivadas continuas, hasta un orden específico, concepto que
se utiliza a menudo en la navegación robótica continua.

En específico, las curvas clotoides o espirales de Euler presentan algunos aspectos
geométricos de aspecto y de seguridad interesantes, que han sido utilizados en di-
versas aplicaciones reales, como en el diseño de carreteras, ferrocarriles y montañas
rusas [48, 49], además, del control de vehículos no-holonómicos [50, 51, 52].

La solución a las curvas clotoides se determina, a través del cálculo de las integra-
les de Fresnel, si bien no existe una solución cerrada para esta curva. Sin embargo,
algunas aproximaciones, con errores de hasta 10−20, permiten el cálculo en tiempo
real [53, 54, 55, 56, 57].Ahora bien, a pesar que no existe una solución analítica, es
posible calcular de forma analítica algunas de sus propiedades geométricas, como la
curvatura y el ángulo tangente en función de la longitud de arco.

Este capítulo se centra en la generación de trayectorias suaves 3D para pilotar UAV
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no-holonómicos (aviones de ala fija). En este contexto, debido a las interesantes ca-
racterísticas de las clotoides, sus propiedades y su suavidad, el objetivo es aproximar
las clotoides 3D mediante curvas racionales Bézier para conseguir un rendimiento
en tiempo real. El esquema de control se divide en dos etapas: planificador local y
control cinemático, como se describe en la Figura 2.

Figura 2: Diagrama de planificación y control.

El capítulo está organizado de la siguiente forma. La sección 2.2 introduce algunos
preliminares sobre las curvas suaves, las clotoides y las curvas de Bézier; en la sec-
ción 2.3 se explica lametodología propuesta para aproximar las clotoides 3Dmediante
curvas de racionales Bézier; a continuación, en la sección 2.4, se realiza algunas prue-
bas de simulación de vuelo, cuyos resultados se muestran y discuten; finalmente en
la sección 2.5 se extrae algunas conclusiones.

2.2 Definición de curvas suaves

Dentro del campo de la geometría, una curva se describe como una línea continua
y suave que sigue una trayectoria definida por reglas matemáticas o por propieda-
des geométricas. Estas curvas, representadas mediante ecuaciones o construcciones
geométricas, pueden ser planas 2D (como una parábola) o espaciales 3D (como una
hélice).
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2.2.1 Curvas en el espacio

Construir una curva en el espacio consiste en definir una función vectorial continua
y diferenciable que describa un camino en el espacio tridimensional 3D. Esta curva
se define mediante una parametrización, usualmente con respecto al tiempo o a otro
parámetro escalar, y permite representar trayectorias que un objeto o sistema pue-
de seguir en un entorno 3D. En este sentido, es importante destacar dos conceptos
primordiales que se desprenden del concepto de curva en el espacio:

1) Curvatura: La curvatura mide cuánto se desvía una curva de ser una línea
recta en un punto dado. Se trata de una cantidad que indica cómo cambia la di-
rección de la tangente a la curva conforme avanzamos sobre ella, demodo que,
si la curvatura es grande, la curva está cambiando de dirección bruscamente,
es decir, está “más doblada”.

2) Torsión: La torsión mide cuánto se “retuerce” o “sale del plano” una curva
en el espacio.. Es decir, indica la variación de la dirección del plano osculador
de la curva, mostrando si la curva se mantiene plana o se extiende tridimen-
sionalmente. Así, una torsión distinta de cero indica que la curva gira fuera de
un solo plano, haciendo que la curva sea verdaderamente espacial.

En relación directa con las fórmulas de Frenet- Serret, que describen el movimiento
de un objeto o punto a lo largo de una curva en el espacio tridimensional, el lector
puede comprender este concepto imaginando que camina por un sendero curvo en
3D: no solo avanza, sino que también puede girar o inclinarse, como se ilustra en la
Figura 3.

De manera formal, cualquier curva espacial C(s), parametrizada por su longitud de
arco s en un espacio tridimensional R3, está determinada por su curvatura κ(s) y su
torsión τ(s) ̸= 0, de acuerdo con el teorema fundamental de las curvas espaciales
[58]. Intuitivamente, una curva puede obtenerse a partir de una recta mediante su
flexión (curvatura) y retorcimiento (torsión). Así, para |κ(s)| > 0 y torsión τ(s), existe
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Figura 3: Diagrama de planificación y control.

una única curva espacial definida por las ecuaciones de Frenet-Serret, tal que:


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siendo, T(s), N(s) y B(s) los vectores tangente, normal y binormal que conforman
un sistema ortogonal unitario de mano derecha, respectivamente. Mientras, T′(s)=

dT(s)/ds, N′(s) = dN(s)/ds y B′(s) = dB(s)/ds son las primeras derivadas de tales
vectores.

Este sistema ortogonal se representa como R(s) :=[T(s) N(s) B(s)] y puede integrar-
se a partir de la ecuación (2.1) a partir del par específico de funciones κ(s) y τ(s),
dado un valor inicial de R(0) :=[T(0) N(0) B(0)]. Una vez determinado el campo de
vectores tangentes, la posición de la curva puede obtenerse integrando dicho vector,
como se indica en la ecuación :

C(s) := C(0) +
∫ s

0

T(ξ) dξ (2.2)
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Figura 3: Diagrama de planificación y control.
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Por otro lado, partiendo de una curva C(s), se puede obtener los vectores tangente
T(s), normalN(s) y binormal B(s). Entonces, teniendo en consideración la teoría de
la geometría diferencial de las curvas [58], se define las siguientes igualdades para
el triedro móvil de cualquier curva C(s):

T(s) := C′(s)

∥C′(s)∥
(2.3)

N(s) :=
T′(s)

∥T′(s)∥
=

[C′(s)× C′′(s)]× C′(s)

∥[C′(s)× C′′(s)]× C′(s)∥
(2.4)

B(s) := T(s)×N(s) =
C′(s)× C′′(s)

∥C′(s)× C′′(s)∥
(2.5)

donde, C′(s)=dC(s)/ds, C′′(s)=d2C(s)/ds2 y
C′′′(s)=d3C(s)/ds3, representan las derivadas del vector de posición C(s).

2.2.2 Clotoides panares 2D

Una espiral de Euler o clotoide plana se define en R2 como la curva cuya curvatura
varía linealmente con respecto a la longitud de arco, tal que:

κ(s) := κ0 + σκs, (2.6)

donde, κ0 es la curvatura inicial y σκ := dκ(s)/ds es la brusquedad de la clotoide,
que está relacionada con su factor de homotecia o escala K, debido a σκ := π/K2,
mientras el ángulo tangente de la clotoide esta dado por:

β(s,p) := κ0s+
σκ

2
s2, (2.7)

donde,p = {κ0, σκ} es el vector de parámetros (para compactar la notación). Además
de esto, el vector tangente, se puede expresar como:

T(s,p) :=

[
cos(β(s,p))
sin(β(s,p))

]
(2.8)

A partir de las ecuaciones (2.2), (2.7) y (2.8), definidas para una clotoide planar (con-
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tenida en el plano XY ) [59], denotadas como C(s,p), pueden derivarse de las inte-
grales de Fresnel:

C(s,p) =

[
C(s,p)
S(s,p)

]
:=

[∫ s

0
cos(κ0ξ +

σκ

2
ξ2) dξ∫ s

0
sin(κ0ξ +

σκ

2
ξ2) dξ

]
(2.9)

siendo, C(s,p) y S(s,p) las integrales de Fresnel en coseno y seno. Es importante
resaltar que, sin pérdida de generalidad, se asume que la clotoide está centrada en
el origen, es decir, C(0) = 0, para la ecuación (2.2).

Los autores de [60] introdujeron la espiral de Euler 3D o clotoide (C3D), definida
en R3, como una curva cuya curvatura varía como en la ecuación (2.6), mientras su
torsión varía, tal que:

τ(s) := τ0 + στs (2.10)

donde, τ0 es la torsión inicial, y στ := dτ/ds es la primera derivada geométrica o
brusquedad de torsión.

El principal inconveniente de las clotoides 3D tal y como se presentan en [60], es
que requiere una integración numérica para ser resuelta. En consecuencia, si se bus-
ca construir un planificador, a través de una curva 3D que alcance una posición u
orientación determinada, los parámetros de la clotoide 3D deben optimizarse para
que la clotoide satisfaga tales restricciones, lo que consume tiempo y no es adecuado
para operaciones en tiempo real.

2.2.3 Curvas Bézier

Con el objetivo de facilitar la comprensión del concepto de curvas Bézier, este tipo
de curvas se puede explicar como un conjunto de líneas suaves definidas por puntos
de control que atraen la curva hacia ellos, creando formas curvas predecibles. La
Figura 4 presenta un ejemplo. En ella, se puede apreciar que la curva (línea negra
discontinua) inicia y finaliza en puntos específicos (puntos rojos), sin embargo, no
incide en ninguno de los puntos intermedios (puntos verdes). Esto significa que la
curva realiza una aproximación hacia los puntos de control.

Las curvas de Bézier constituyen un método matemático para representar curvas de
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Figura 4: Forma clásica de la Curva de Bézier.

forma numéricamente estable [61, 62]. En este sentido, una curva de Bézier caracte-
rizado por tener un solo componente polinómico. Los polinomios de Bernstein de
grado n (con n > 0) también pueden interpretarse como funciones básicas B-splines
de grado n definidas sobre el dominio de dichos polinomios.

La curva de Bézier de grado n puede expresarse de la siguiente manera:

BB(s,P) =
n∑

i=0

(
n

i

)
Pi

(
sf − s

sf

)n−i (
s

sf

)i

= P0(1− t)n +

(
n

1

)n−1

t+ · · ·+ Pnt
n,

t ∈ [0, 1]

(2.11)

donde, P :=
[
PT
0 ,PT

1 , . . . ,PT
n

]
∈ R3(n+1) son el conjunto de puntos de control Pi, sf

es la longitud de la curva y R3 es el espacio 3D en el que se define la curva. En
otras palabras, el grado n de la curva de Bézier signifca una interpolación entre los
n+ 1 puntos de control 3D. Por lo tanto, las curvas de Bézier pueden expresarse en
términos de polinomios de Bernstein de grado n, tal que:

BB(s,P) =
n∑

i=0

bi,n(s)Pi, s ∈ [0, sf ] (2.12)

16

Figura 4: Forma clásica de la Curva de Bézier.

forma numéricamente estable [61, 62]. En este sentido, una curva de Bézier caracte-
rizado por tener un solo componente polinómico. Los polinomios de Bernstein de
grado n (con n > 0) también pueden interpretarse como funciones básicas B-splines
de grado n definidas sobre el dominio de dichos polinomios.

La curva de Bézier de grado n puede expresarse de la siguiente manera:

BB(s,P) =
n∑

i=0

(
n

i

)
Pi

(
sf − s

sf

)n−i (
s

sf

)i

= P0(1− t)n +

(
n

1

)n−1

t+ · · ·+ Pnt
n,

t ∈ [0, 1]

(2.11)

donde, P :=
[
PT
0 ,PT

1 , . . . ,PT
n

]
∈ R3(n+1) son el conjunto de puntos de control Pi, sf

es la longitud de la curva y R3 es el espacio 3D en el que se define la curva. En
otras palabras, el grado n de la curva de Bézier signifca una interpolación entre los
n+ 1 puntos de control 3D. Por lo tanto, las curvas de Bézier pueden expresarse en
términos de polinomios de Bernstein de grado n, tal que:

BB(s,P) =
n∑

i=0

bi,n(s)Pi, s ∈ [0, sf ] (2.12)

16

Figura 2.3:



32

siendo, los polinomios bi,n(s) ∈ R

bi,n(s) :=

(
n

i

)(
sf − s

sf

)n−i (
s

sf

)i

, i = 0, . . . , n (2.13)

LLaprincipal ventaja de las curvas de Bézier con respecto a las clotoides es que tienen
propiedades de escalado y rotación [63].Por lo tanto, se puede ajustar los Pide una
Bézier unitaria y luego utilizarlos para generar una gran variedad de curvas debido
a las propiedades mencionadas.

2.3 Control de seguimiento y Actitud

Una problemática de estudio importante, dentro de la tecnología UAV, tiene que
ver con el control de seguimiento y actitud de vuelo [64].Esto es especialmente re-
levante en los aviones (vehículos voladores de ala fija), porque poseen restricciones
no-holonómicas y, por tanto, el control de trayectoria y actitud es la opción natural
para pilotar un UAV.

2.3.1 Generación de trayectorias suaves

Los autores de [60] desarrollaron una curva suave para unir dos configuraciones
punto-vector en el espacio 3D.El punto de partida son las ecuaciones de Frenet-
Serret, como se describe en (2.1), y el objetivo es calcular una curva en el espacio
como en la ecuación (2.2). De esta forma, se ha construido una curva que une dos
configuraciones arbitrarias de puntos-vectores, por medio del algoritmo de optimi-
zación del descenso del gradiente [65]. El procedimiento obtiene los valores óptimos
de la curvatura κ0 y torsión τ0 iniciales, así como la brusquedad de curvatura σκ y
la brusquedad de torsión στ . Por tanto, su solución podría tomar cualquier valor
inicial y final de κ y τ . Sin embargo, cuando se planifican curvas para vehículos no-
holonómicos, como los robots aéreos o subacuáticos que se mueven en un espacio
3D, debido a sus restricciones no-holonómicas, dichos vehículos no pueden seguir
curvas arbitrarias con cambios instantáneos de κ, τ de orientación. En consecuencia,
en muchos casos prácticos, los valores de la κ y τ iniciales son establecidos, basán-
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dose en la κ y la τ actuales del robot. En ese caso, utilizando la solución propuesta en
[60] ] sólo se puede conseguir la posición final o la orientación final, pero no ambas
simultáneamente.

En este capítulo se intenta construir una curva, parametrizada a través de un vector
de parámetros genérico p, denominado C(s,p). En realidad, el vector de paráme-
tros, se divide en dos subconjuntos de parámetros p := [p0 p̃], donde, p0 = (κ0, τ0)

es una lista de parámetros que definen las condiciones iniciales; y p̃ = (σκ, στ ) es el
parámetro de diseño. El objetivo es calcular p̃∗ tal que T(s,p) = T∗ para un s > 0

dado. Sin pérdida de generalidad se asume que el marco local de la curva es coin-
cidente con el marco de coordenadas global, lo que significa que el punto inicial es
C(0,p) = [0, 0, 0]T .

Utilizando las propiedades de las clotoides [66], se ha proporcionado una solución
inicial para el procedimiento de optimización. Entonces, el punto de partida es el
cálculo individual de la brusquedad requerida por dos clotoides, en los planos XY

y Y Z. De esta forma, se obtiene σκ y στ , por separado, para un ángulo de cabeceo
θ(s) y un ángulo de guiñada ψ(s), siendo:

γτ =

√
|θ(s)|
π/2

γκ =

√
ψ(s)

π/2
(2.14)

σκ0 = (θ(s))
πγ2

κ

s2
(2.15)

στ0 = (ψ(s))
πγ2

τ

s2
(2.16)

Por lo tanto, el problema a resolver se puede plantear como un problema de mini-
mización de la orientación con la conjetura inicial p̃ = (σκ0 , στ0):

p̃∗ = argp̃mín ∥T
∗ − T(s,p)∥ (2.17)
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2.3.2 Aproximación a la Clothoide 3D

A continuación, se realiza la descripción del método propuesto para aproximar las
clotoides 3D utilizando curvas racionales de Bézier (RB), con un número determina-
do de puntos. El método realiza una ampliación de la formulación proporcionada en
[63],considerando pesos independientes en cada Pi de una curva RB. De esta forma,
las curvas RB se pueden expresar como:

BRB(s,P,W) :=
[∑

n
i=0bi,n(s)Wi

]−1∑
n
i=0bi,n(s)WiPi, (2.18)

donde,Wi ∈ R3 es una matriz diagonal de pesos.

Los parámetros a aprender son la posición de los pesos Pi y losWi. Dado que pre-
sentan una relación no lineal, se busca aprender estos parámetros por medio de un
método de dos pasos. Primero se busca aprender la posición de los Pi, asumiendo
Wi = I, lo que corresponde a la expresión de una curva de Bézier convencional.
Después, aprender los pesos de la curva RB, considerando que los Pi aprende los
pesos de la curva RB, considerando que los Pi son fijos, con el objetivo de refinar la
estimación, incluyendo una mayor flexibilidad para ajustarse a la curva clotoide 3D
original. Entonces, para estimar la curva de Bézier convencional, se fija la posición
del primer y último Pi a los valores inicial y final de la curva, es decir, P0 = C(0,p) y
Pn = C(sf ,p), donde, sf es la longitud total de la curva. Dado que se asumeWi = I,
entonces, los puntos de la curva se pueden obtener mediante un ajuste por mínimos
cuadrados (LS) Y = X~P, tal que:

Y =



C(0,p)− b0,n(0)∑n

i bi,n(0)
P0 − bn,n(0)∑n

i bi,n(0)
Pn

...
C(sf ,p)− b0,n(1)∑n

i bi,n(1)
P0 − bn,n(1)∑n

i bi,n(1)
Pn


 (2.19)

X =




b1,n(0)∑n
i bi,n(0)

. . . bn−1,n(0)∑n
i bi,n(0)

... . . . ...
b1,n(0)∑n
i bi,n(1)

. . . bn−1,n(0)∑n
i bi,n(1)


 (2.20)
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~P =




P1

...
Pn−1


 (2.21)

Con la posición estimada de los Pi, es posible estimar los valores de los pesos para
cada coordenada. Primero se expresa la igualdadC(s,p) = BRB(s,P,W) en términos
de los pesos, siendo:

n∑
i=0

bi,n(s)C(s,p)Wi =
n∑

i=0

bi,n(s)PiWi, (2.22)

considerando que W0 = I y Wn = I, entonces, con el objetivo de asegurar que la
curva estimada comience y termine en la posición inicial y final de la curva original,
se obtiene la ecuación lineal Ŷ = X̂Ŵ, que se puede resolver mediante LS:

Ŷ =




b0,n(0)P̂0(0) + bn,n(0)P̂n(0)
...

b0,n(sf )P̂0(sf ) + bn,n(sf )P̂n(sf )


 (2.23)

X̂ =




−b1,n(0)P̂1(0) . . . bn−1,n(0)P̂n−1(0)
... . . . ...

−b1,n(sf )P̂1(sf ) . . . bn−1,n(sf )P̂n−1(sf )


 (2.24)

Ŵ =
[
WT

1 . . . WT
n−1

]T
(2.25)

donde, P̂i(s) := (C(s,p)− Pi) y abusando de la notación Ŵ es efectivamente una
versión vectorizada de la misma, al resolver el problema LS.

2.4 Experimentos y Resultados

La experimentación se ha llevado a cabo a través de las herramientas de simula-
ción de vuelo FlightGear 2018 y el entorno de desarrollo integrado Matlab R2017b.
El modelo de avión utilizado para las simulaciones dinámicas se basa en el UAV
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Kadett 2400 [67], como se representa en la Figura 5. El sistema tiene 4 entradas
(véase la Figura 6) para controlar las superficies aerodinámicas y la velocidad. Sien-
do, δe (elevador), δa (alerón), δr (timón) y δth (acelerador). Como cualquier vehículo
que se mueve en un espacio cartesiano 3D, puede representarse mediante 6 esta-
dos {x, y, z, φ, θ, ψ}, donde los tres primeros estados definen el vector de posición
del centro de gravedad CG ccon respecto a un sistema de coordenadas global CSg

situado en el origen y los tres últimos son los ángulos de Euler de balanceo, cabeceo
y guiñada, respectivamente, que definen la orientación del sistema de coordenadas
local del cuerpo CSb con respecto a CSg.

Debe observarse queCSb está definidopor 3vectores ortogonales unitarios {Xb, Yb, Zb},
alineados con los tres ejes del vehículo y centrados en CG, con Zb apuntando hacia
abajo, como puede verse en la Figura 5. Las velocidades angulares a lo largo de los
ejes Xb ,Yb y Zb se representan por p, q y r, respectivamente, como se detalla en [67].
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Figura 5: Definición del modelo UAV Kadett y sus varia-bles.

La Figura 6 muestra la estructura de control utilizada para la aeronave. Dadas unas
condiciones iniciales (vector tangente actual T) y una configuración objetivo (vector
tangente finalT∗),�), se genera una trayectoria de referencia. El objetivo esmantener
una velocidad constante vel a lo largo de la trayectoria, lo que se consigue mediante
un controlador PID que afecta al acelerador. Además, los perfiles θ yψ de la trayecto-
ria generada se utilizan como entrada de referencia para otros dos controladores PID.
El primer PID controla el elevador, que afecta a la orientación del cabeceo. Mientras
que, la salida del segundo PID se multiplica por una ganancia K K para controlar
el alerón, que afecta a la orientación del alabeo, pero también hace que el avión gire
y, por tanto, afecta a la orientación de la guiñada. La acción de control también se
aplica al timón, lo que afecta ligeramente a la orientación de la guiñada y se utiliza
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para compensar pequeños errores al seguir la guiñada de referencia ψ.

Como se explica en la sección 2.3.2, una clotoide 3D (C3D) puede ser aproximada
por una curva RB. El principal inconveniente de utilizar C3D es que estas curvas se
calculan utilizando las integrales de Fresnel, lo que, para un paso de discretización
pequeño y distancias largas (límite superior de integración), significa un alto con-
sumo de tiempo computacional. Además, otro problema es que el resultado final
depende de la selección del paso de discretización. Así, para idénticos valores de σκ

y στ , la trayectoria generada y la orientación final serán diferentes dependiendo de
dicho paso de integración.

Figura 6: Esquema utilizado para el control del modelo de UAV Kadett.

Por el contrario, una RB que está parametrizada por n Puntos de control y pesos pue-
de, , en consecuencia, ser discretizada utilizando cualquier paso, produciendo siem-
pre la misma curva. Otro inconveniente de utilizar directamente las curvas C3D es
que, para resolver el problema de planificación, se utiliza algoritmos de optimiza-
ción, con el objetivo de encontrar los valores σ∗

κ0
y στ0∗ y, a partir de ello, alcanzar un

determinado vector tangente final T∗,para un determinado paso de integración. Este
proceso consume mucho tiempo y no es apropiado para la planificación y el control
en tiempo real de los UAV.

Para las simulaciones realizadas en esta sección, se ha aproximado unaC3D, a través
de una RB de orden n = 13. Tras un estudio en el que se utilizó diferentes órdenes
(n = {5, 7, 9, 11, 13, 15, 17}), que no se muestra en favor de la brevedad, se encontró
que n = 13 fue lamejor opción teniendo en cuenta la precisión y el tiempo de cálculo.
Para este caso particular, se ha generado unaC3D utilizando 104 puntos discretos. La
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dos {x, y, z, φ, θ, ψ}, donde los tres primeros estados definen el vector de posición
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abajo, como puede verse en la Figura 5. Las velocidades angulares a lo largo de los
ejes Xb ,Yb y Zb se representan por p, q y r, respectivamente, como se detalla en [67].
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brusquedad de la curvatura se fija en σκ = 5,54 · 10−5[ rad/m2], la brusquedad de la
torsión es στ = 6,12 ·10−5[ rad/m2], la longitud total es l = 180m, con ángulos finales
θ = −π/8 rad y ψ = π/4 rad. El tiempo medio de cálculo para este caso particular
es tc = 15,97[ms], mientras que el error de aproximación integrado a lo largo de la
trayectoria es e = 5,84 · 10−6[m].

Para este análisis se ha utilizadoun ordenador conprocesador Intel Core i7−6700HQ

2, 60GHz y memoria DDR4 de 16GiB. La Figura 7 muestra la C3D (azul) y la RB
aproximada (rojo discontinuo), así como los Pi (círculos verdes).

Figura 7: Aproximación de C3D con RBC: orientación final: θ∗ = −π/8 y ψ∗ = π/4.

Para los experimentos se ha establecido que, la velocidad de referencia es contante
en vel = 18[m/s], con un período de muestreo de Ts = 20[ms] para controlar la
aeronave. Dado que la longitud de la trayectoria de referencia se ha fijado en l =

180[m], entonces, el tiempo de simulación es de t = 10[s].

Con el objetivo de realizar una descripción gráfica del seguimiento de la trayectoria
por parte del UAV, en la Figura 8 se puede apreciar que el UAV (rojo) sigue muy de
cerca la trayectoria de la referencia (azul), ), incluso cuando el UAV solo realiza el
seguimiento de las referencias de cabeceo y guiñada.

Por otro lado, la Figura 9 muestra los errores de seguimiento para algunas variables.
Se puede observar que el error de seguimiento de los ángulos de cabeceo y guiñada
es lento. Esto se debe, principalmente, a que el RB es una aproximación de una C3D,
que posee la propiedad de suavidad que permite un seguimiento fácil. En cuanto a la
velocidad, el error es muy bajo a lo largo de casi toda la trayectoria. Sin embargo, en
la última parte (alrededor de l = 180[m]),debido a que el ángulo de cabeceo es alto,
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Figura 8: Trayectoria trazada por el UAV (rojo discontinuo) siguiendo una C3D
aproximada por un RB (azul) con una longitud l = 180 m y orientación final
θ∗ = −π/8 rad y ψ∗ = π/4 rad.

el UAV tiene algunas dificultades para seguir la velocidad de referencia y el error
ev aumenta. Como consecuencia, la distancia ed entre el vehículo y la trayectoria
también aumenta considerablemente en la segunda mitad del experimento.
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Figura 9: Error de seguimiento de los ángulos de guiñada y cabeceo, velocidad y
distancia de posición a la trayectoria de referencia.

Finalmete, la Figura 10 presenta una secuencia de capturas de pantalla de la simu-
lación en diferentes instantes de tiempo t = {0, 2, 4, 6, 8, 10}[s]. Se puede observar
que el UAV comienza en t = 0[s] con altura h = 0, alabeo φ = 0, cabeceo θ = 0 y
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torsión es στ = 6,12 ·10−5[ rad/m2], la longitud total es l = 180m, con ángulos finales
θ = −π/8 rad y ψ = π/4 rad. El tiempo medio de cálculo para este caso particular
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trayectoria es e = 5,84 · 10−6[m].
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2, 60GHz y memoria DDR4 de 16GiB. La Figura 7 muestra la C3D (azul) y la RB
aproximada (rojo discontinuo), así como los Pi (círculos verdes).

Figura 7: Aproximación de C3D con RBC: orientación final: θ∗ = −π/8 y ψ∗ = π/4.

Para los experimentos se ha establecido que, la velocidad de referencia es contante
en vel = 18[m/s], con un período de muestreo de Ts = 20[ms] para controlar la
aeronave. Dado que la longitud de la trayectoria de referencia se ha fijado en l =

180[m], entonces, el tiempo de simulación es de t = 10[s].

Con el objetivo de realizar una descripción gráfica del seguimiento de la trayectoria
por parte del UAV, en la Figura 8 se puede apreciar que el UAV (rojo) sigue muy de
cerca la trayectoria de la referencia (azul), ), incluso cuando el UAV solo realiza el
seguimiento de las referencias de cabeceo y guiñada.

Por otro lado, la Figura 9 muestra los errores de seguimiento para algunas variables.
Se puede observar que el error de seguimiento de los ángulos de cabeceo y guiñada
es lento. Esto se debe, principalmente, a que el RB es una aproximación de una C3D,
que posee la propiedad de suavidad que permite un seguimiento fácil. En cuanto a la
velocidad, el error es muy bajo a lo largo de casi toda la trayectoria. Sin embargo, en
la última parte (alrededor de l = 180[m]),debido a que el ángulo de cabeceo es alto,
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Figura 9: Error de seguimiento de los ángulos de guiñada y cabeceo, velocidad y
distancia de posición a la trayectoria de referencia.

Finalmete, la Figura 10 presenta una secuencia de capturas de pantalla de la simu-
lación en diferentes instantes de tiempo t = {0, 2, 4, 6, 8, 10}[s]. Se puede observar
que el UAV comienza en t = 0[s] con altura h = 0, alabeo φ = 0, cabeceo θ = 0 y
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Figura 8: Trayectoria trazada por el UAV (rojo discontinuo) siguiendo una C3D
aproximada por un RB (azul) con una longitud l = 180 m y orientación final
θ∗ = −π/8 rad y ψ∗ = π/4 rad.

el UAV tiene algunas dificultades para seguir la velocidad de referencia y el error
ev aumenta. Como consecuencia, la distancia ed entre el vehículo y la trayectoria
también aumenta considerablemente en la segunda mitad del experimento.
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brusquedad de la curvatura se fija en σκ = 5,54 · 10−5[ rad/m2], la brusquedad de la
torsión es στ = 6,12 ·10−5[ rad/m2], la longitud total es l = 180m, con ángulos finales
θ = −π/8 rad y ψ = π/4 rad. El tiempo medio de cálculo para este caso particular
es tc = 15,97[ms], mientras que el error de aproximación integrado a lo largo de la
trayectoria es e = 5,84 · 10−6[m].

Para este análisis se ha utilizadoun ordenador conprocesador Intel Core i7−6700HQ

2, 60GHz y memoria DDR4 de 16GiB. La Figura 7 muestra la C3D (azul) y la RB
aproximada (rojo discontinuo), así como los Pi (círculos verdes).

Figura 7: Aproximación de C3D con RBC: orientación final: θ∗ = −π/8 y ψ∗ = π/4.

Para los experimentos se ha establecido que, la velocidad de referencia es contante
en vel = 18[m/s], con un período de muestreo de Ts = 20[ms] para controlar la
aeronave. Dado que la longitud de la trayectoria de referencia se ha fijado en l =

180[m], entonces, el tiempo de simulación es de t = 10[s].

Con el objetivo de realizar una descripción gráfica del seguimiento de la trayectoria
por parte del UAV, en la Figura 8 se puede apreciar que el UAV (rojo) sigue muy de
cerca la trayectoria de la referencia (azul), ), incluso cuando el UAV solo realiza el
seguimiento de las referencias de cabeceo y guiñada.

Por otro lado, la Figura 9 muestra los errores de seguimiento para algunas variables.
Se puede observar que el error de seguimiento de los ángulos de cabeceo y guiñada
es lento. Esto se debe, principalmente, a que el RB es una aproximación de una C3D,
que posee la propiedad de suavidad que permite un seguimiento fácil. En cuanto a la
velocidad, el error es muy bajo a lo largo de casi toda la trayectoria. Sin embargo, en
la última parte (alrededor de l = 180[m]),debido a que el ángulo de cabeceo es alto,
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Figura 2.7:

también aumenta considerablemente en la segunda mitad del experimento.
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(a) t = 0 s (b) t = 2 s

(c) t = 4 s (d) t = 6 s

Figura 10: Capturas de pantalla de la simulación en FlightGear.

guiñada ψ = 0.A continuación, comienza el giro en alabeo, lo que hace que el avión
gire hacia la izquierda, mientras aumenta progresivamente su ángulo de cabeceo y,
en consecuencia su altura (t = {2 − 8}s). La última imagen muestra el UAV en la
última configuración t = 10s, con cabeceo θ = −π/8 rad y guiñada ψ = π/4 rad.
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Figura 2.9:
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(a) t = 0 s (b) t = 2 s

(c) t = 4 s (d) t = 6 s

Figura 10: Capturas de pantalla de la simulación en FlightGear.

guiñada ψ = 0.A continuación, comienza el giro en alabeo, lo que hace que el avión
gire hacia la izquierda, mientras aumenta progresivamente su ángulo de cabeceo y,
en consecuencia su altura (t = {2 − 8}s). La última imagen muestra el UAV en la
última configuración t = 10s, con cabeceo θ = −π/8 rad y guiñada ψ = π/4 rad.
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2.5 Conclusiones

Se ha presentadounplanificador de trayectorias suaves para aviones de ala fija. El es-
quema de control se divide en dos etapas: planificador local y control cinemático. En
la etapa de planificación, las clotoides 3D se aproximan mediante curvas racionales
de Bézier para generar trayectorias suaves en el espacio euclidiano 3D.A continua-
ción, con el objetivo de seguir las referencias de velocidad y orientación, se utiliza la
trayectoria como referencia para pilotar el UAV de forma autónoma.

El uso de RBC de orden 13 para aproximar clotoides 3D ha demostrado ser eficiente
computacionalmente (alrededor de 16 ms para calcular 104 puntos discretos) y con
alta precisión (error de aproximación de alrededor de e = 6 · 10−6s a lo largo de una
trayectoria con longitud 180s.

Se ha realizado pruebas de simulación de vuelo utilizando el simulador FlightGear
yMATLAB. Tras analizar los resultados, se observa algunas ventajas interesantes en
el uso de clotoides 3D para la planificación de trayectorias. Un vehículo no- holonó-
mico que sigue estas trayectorias suaves es capaz de seguir fácilmente la referencia
de los ángulos de cabeceo y guiñada. En este sentido, aunque no se tenga en cuenta la
referencia de posición, los resultados han demostrado que un UAV no-holonómico
es capaz de trazar una trayectoria cercana a la diseñada por el planificador de tra-
yectorias.
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03
Planificación de trayectorias 3D
limitadas por restricciones de 
maniobrabilidad en UAVs

RESUMEN

Este capítulo presenta una propuesta para la generación de trayectoias suaves tridi-
miensionales 3D, navegables por vehículos aéreos no tripulados de características 
no- holonómicas (es decir, aviones de ala fija), a partir de la construcción de curvas 
continuas. El estudio realiza una breve inclusión de maniobrabilidad real de UAV de 
ala fija, donde el comportamiento dinámico y cinemático introduce restricciones en 
entornos reales. Finalmente, se incluye resultados de simulación de vuelo para clari-
ficar la teoría presentada.
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maniobrabilidad en UAVs

RESUMEN

Este capítulo presenta una propuesta para la generación de trayectoias suaves tridi-
miensionales 3D, navegables por vehículos aéreos no tripulados de características 
no- holonómicas (es decir, aviones de ala fija), a partir de la construcción de curvas 
continuas. El estudio realiza una breve inclusión de maniobrabilidad real de UAV de 
ala fija, donde el comportamiento dinámico y cinemático introduce restricciones en 
entornos reales. Finalmente, se incluye resultados de simulación de vuelo para clari-
ficar la teoría presentada.

3.1 Introducción

Un reto fundamental para los algoritmos de planificación de vuelo consiste en incor-
porar estrategias activas de evitación de obstáculos, que garanticen una navegación
continua, fluida y segura. Este reto implica la consideración de diversos aspectos,
como las aceleraciones tangenciales, las derivadas parciales en sus componentes di-
mensionales, la odometría y el ruido [68, 69]. Actualmente, este campo de trabajo
evidencia una actividad de investigación activa y relevante.

La literatura sobre planificadores de trayectoria y evasión de obstáculos, que además
garanticen un segumiento fluido y seguro, ya sea en entornos contínuos o discretos,
es amplia. Por este motivo, para el desarrollo de este capítulo se ha seleccionado dos
de los enfoques más relevantes de la literatura para su comparación. Por un lado, se
analiza la metodología rapidly-exploring random tree (RRT), que realiza el mapeo
en el espacio continuo [70, 71, 72] Por otro lado, se considera lametodologíamodified
adaptive cell decomposition (MACD) [73] basado en técnicas de discretización del
espacio [74, 75].

El enfoque general de las principales metodologías mencionadas consiste en des-
cribir la trayectoria óptima como un conjunto de puntos discretos. Ahora bien, este
conjunto de puntos multidimensionales no resulta adecuado para un vehículo aéreo
no tripulado (UAV) con características no-holonómicas (es decir, UAV de ala fija)
[76].Es importante destacar que los UAV con esta estructura particular realizan un
vuelo continuo a una velocidad definida. Por lo tanto, sus movimientos están limi-
tados por su capacidad de maniobrabilidad. En este sentido, cualquier trayectoria
de vuelo calculada debe satisfacer las restricciones propias del modelo cinemático
del UAV. Un enfoque interesante de estudio aborda la búsqueda de trayectorias que
no solo rodeen el obstáculo por sus lados, sino que también lo evadan por arriba
o por debajo. Con el objetivo para explotar todas las capacidades de maniobrabili-
dad de los UAV, este capítulo presenta un enfoque general de trabajo en el espacio
euclidiano 3D.

En resumen, el capítulo introduce unmétodo para la creación de trayectorias suaves
3D, a partir de la construcción de curvas compuestas por segmentos de líneas rectas
y segmentos curvos. Para la construcción de estas curvas se ha considerado las ca-
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racterísticas cinemáticas del UAV de ala fija [77]. Finalmente, se presenta una breve
transición completa entre la curva y la trayectoria navegable por un UAV.

Figura 11: Descripción del problema de planificación de trayectoria suave 3D para
un UAV de ala fija.

El capítulo se organiza de la siguiente forma: en la sección 3.2, se define el mode-
lo UAV, además del enfoque de curvatura; en la sección 3.3 se presenta un nuevo
enfoque para la construcción de trayectorias suaves; en la sección 3.4, se analiza los
resultados y datos estadísticos obtenidos, a través de simulacionesde vuelo; por úl-
timo, se señala las principales conclusiones en la section 3.5.

3.2 Descripción del modelo UAV

Antes de realizar una definición matemática formal de un UAV, es importante en-
tender de forma sencilla su concepto. Más allá del significado de sus siglas, que ya
fueron definidas en el capítulo introductorio, es importante destacar que un UAV es
una aeronave que puede volar sin piloto, tripulación ni pasajeros a bordo. Se contro-
la de forma remota o funciona de forma autónoma, a través de una computadora a
bordo, que le proporciona diferentes habilidades, entre las que se destaca la posibi-
lidad de seguimiento de rutas programadas o respondiendo a sensores. Finalmente,
un UAV integra a un operador humano que controla el UAV desde una estación de
control terrestre.
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3.2.1 Sistema no-holonómico UAV

Aunque los conceptos de sistemas holonómicos y no-holonómicos parezcan compli-
cados, en realidad no lo son. En referencia directa a los vehículosmóviles, un sistema
holonómico se define como la capacidad de un vehículo de realizar giros bruscos,
como un vehículo terrestre omnidireccional (ODV) que puede girar sobre sí mismo,
como lo haría un helicóptero al realizar maniobras similares en el aire. En cambio,
el vehículo no-holonómico presenta una restricción de movimiento, pues no pue-
de moverse en cualquier dirección sin realizar un desplazamiento, así como sucede
con un automóvil que, para girar a un lado, necesita estar en desplazamiento. Otro
ejemplo es el avión de alas, que requiere estar en vuelo para poder realizar un giro
en cualquier dirección.

Entonces,se puede asumir aB como un UAV no-holonómico con masaM e inercia
I, que se desplaza en el espacio euclidiano R3, y cuyo espacio de estados debido al
desplazamiento se define de la siguiente manera:

qR(t) =(XR(t), YR(t), ZR(t),

FR(t), GR(t), VR(t),WR(t))
T ∈ R7

(3.1)

donde, XR(t), YR(t) y ZR(t) representan el sistema de conversión de Tait-Bryan [78,
79] con origen común. En este caso, se puede eliminar la dependencia del tiempo y
asumir condiciones ideales de vuelo estacionario para el UAV. Además de la fuerza
totalFR(t) = 0, elmomento totalGR(t) = 0, la velocidad lineal y la velocidad angular
son constantes VR(t) = WR(t) = k. Entonces, se puede definir una configuración
reducida de la siguiente manera:

q̇R = [ϕR, θR, ψR]
T (3.2)

donde,ψR(t) es el ángulo de guiñada, θ(t) es el ángulo de cabeceo y ϕR(t) es el ángulo
de alabeo del UAV.

Si se asume las refracciones en un modelo geométrico de aproximación a la tierra
plana [80],entonces se puede considerar que el sistema local del UAV permanece
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alineado con un sistema cartesiano objetivo qT = [XT , YT , ZT ]
T . En este caso, las

ecuaciones del sistema coinciden con los puntos de cada modelo. Por lo tanto, existe
una conexión en todo momento entre los puntos generados por la posición del UAV
q̇R y otra configuración derivada equivalente qT .

Por otra parte, la relación de las coordenadas cartesianas sobre conjuntos abiertos
U = {(r, θ, φ)|r < 0, 0 < θ < π, 0 ≤ φ < 2π} y V = {(x, y, z)|x2 + y2 + z2 > 0},
muestra una correspondencia unívoca F ′ : V → U entre las coordenadas cartesianas
y esféricas, que alcanzan singularidad al extenderse al eje z, con x2 + y2 = 0, donde,
φ no está definido. Además, φ no es continua en (x, y, z), con x = 0.

Por lo tanto, la función inversa F−11 entre los mismos conjuntos abiertos se puede
describir los siguientes términos:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(3.3)

donde, la matriz jacobiana se define como:

∥J∥ = r2 sin θ (3.4)

3.2.2 Radio de Curvatura

Lamagnitud quemide el cambio de dirección de la curva del vector tangente (defini-
da como curvatura), frente a un objeto diferenciable incrustado en el espacio euclídeo
[81], se define a partir de la ecuación paramétrica de la circunferencia g : R → Rn,
que asume el mismo valor de λ y satisface g′(t) = λ′(t), siendo g′′(t) = λ′′(t) en cada t
fijo. Entonces, el radio no depende de la posición de λ(t), sino unicamente de la velo-
cidad λ′(t) y de la aceleración λ′′(t). Por tanto, la ecuación paramétrica λ(t) : R → Rn

define la curvatura ρ en dependencia de los escalares |λ′(t)|2, |λ′(t)|2 y λ′ · λ′(t)

Se parte de la ecuación paramétrica general de la circunferencia g(u) = A cos(h(u))+
B sin(h(u)) + C, donde, C ∈ Rn es el centro, A,B ∈ R son vectores perpendiculares
de módulo ρ. Entonces, A ·A = B ·B = ρ2 ∧A ·B = 0, h : R → R, es una función do-

31



47

alineado con un sistema cartesiano objetivo qT = [XT , YT , ZT ]
T . En este caso, las

ecuaciones del sistema coinciden con los puntos de cada modelo. Por lo tanto, existe
una conexión en todo momento entre los puntos generados por la posición del UAV
q̇R y otra configuración derivada equivalente qT .

Por otra parte, la relación de las coordenadas cartesianas sobre conjuntos abiertos
U = {(r, θ, φ)|r < 0, 0 < θ < π, 0 ≤ φ < 2π} y V = {(x, y, z)|x2 + y2 + z2 > 0},
muestra una correspondencia unívoca F ′ : V → U entre las coordenadas cartesianas
y esféricas, que alcanzan singularidad al extenderse al eje z, con x2 + y2 = 0, donde,
φ no está definido. Además, φ no es continua en (x, y, z), con x = 0.

Por lo tanto, la función inversa F−11 entre los mismos conjuntos abiertos se puede
describir los siguientes términos:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(3.3)

donde, la matriz jacobiana se define como:

∥J∥ = r2 sin θ (3.4)

3.2.2 Radio de Curvatura

Lamagnitud quemide el cambio de dirección de la curva del vector tangente (defini-
da como curvatura), frente a un objeto diferenciable incrustado en el espacio euclídeo
[81], se define a partir de la ecuación paramétrica de la circunferencia g : R → Rn,
que asume el mismo valor de λ y satisface g′(t) = λ′(t), siendo g′′(t) = λ′′(t) en cada t
fijo. Entonces, el radio no depende de la posición de λ(t), sino unicamente de la velo-
cidad λ′(t) y de la aceleración λ′′(t). Por tanto, la ecuación paramétrica λ(t) : R → Rn

define la curvatura ρ en dependencia de los escalares |λ′(t)|2, |λ′(t)|2 y λ′ · λ′(t)

Se parte de la ecuación paramétrica general de la circunferencia g(u) = A cos(h(u))+
B sin(h(u)) + C, donde, C ∈ Rn es el centro, A,B ∈ R son vectores perpendiculares
de módulo ρ. Entonces, A ·A = B ·B = ρ2 ∧A ·B = 0, h : R → R, es una función do-

31

blemente diferenciable en t. Por lo tanto, el sistema de derivadas se puede describir
de la siguiente manera:

|g′|2 = ρ2(h′)2

g′ · g′′ = ρ2h′h′′

|g′′|2 = ρ2((h′)4) + (h′′)2

(3.5)

donde, el sistema derivado en relación con λ se define como:

|λ′2(t)| = ρ2h′2(t)

ρ′(t) · λ′′(t) = ρ2h′(t)h′′(t)

|λ′′2(t)| = ρ(h′4(t) + h′′2(t))

(3.6)

Entonces, el sistema resultante en ρ, h′(t) y h′′(t) se define como:

ρ =
|λ|3√

|λ′|2|λ′′|2 − (λ′ · λ′′)2
(3.7)

donde, ρ es la magnitud geométrica del radio de curvatura.

3.3 Definición de curvas

Diversos planificadores de trayectorias [82], devuelven un conjunto de vértices y
nodos en su resultado, que se definen como puntos de control Pi. Por lo tanto, la tra-
yectoria 3D es definida a partir de un conjunto Pi, establecido en un orden específico,
y expresarsado como una secuencia de interpolación discreta.

Pi = vi = f(ti) → R (3.8)

donde, f(ti) es un conjunto de puntos 3D e i = 1, . . . , n (siendo, n el número total de
puntos) es un conjunto de nodos conocidos a partir de la planificación de trayectoria.
Por lo tanto, se puede definir un conjunto de k sub-intervalos entre i = 1 e i = n
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particionado en [a, b], siendo:

[a, b] = [t1, t2] ∪ [t2, t3] ∪ . . . ∪ [tn−2, tn−1] ∪ [tn−1, tn]

a = t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ tn = b
(3.9)

Por tanto, se puede expresar una curva s(t) con n polinomios a trozos, tal que:

s(t) =





s1(t), t ∈ [t0, t1]

s2(t), t ∈ [t1, t2]

...

sn(t), t ∈ [tn−1, tn]

sj(t) = qkt
k + qk−1t

k−1 + · · ·+ q1t
1 + q0t

0

j = 1, 2, . . . , n
(3.10)

donde, qk, representa coeficientes constantes, k es el grado del polinomio sj(t). En-
tonces, s(t) representa la función de interpolación spline [77, 83] de grado k para la
secuencia discreta Pi = vi = f(ti).

Por otra parte, dentro de la interpolación polinómica, un efecto común es el conocido
fenómenode oscilación deRunge [84]. En este sentido, las funciones de interpolación
por curvas splines [77] minimizan la rugosidad sometida a restricciones, además, de
su extrapolación en varias dimensiones.

3.3.1 Algoritmo de De Boor

El algoritmo De Boor es un método utilizado para evaluar curvas B-spline que, ade-
más, son una generalización de las curvas de Bézier. En realidad, realizan un prome-
dio ponderado que se ajusta paso a paso, acercándose al punto correcto en la curva..

El algoritmo de De Boor [85] ofrece una estabilidad numérica para evaluar curvas
spline s(x) en el punto x. De Boor se construye a partir de una suma de funciones
B-spline Bi,p(x)multiplicadas por los Pi. Las B-splines de orden p+1, son funciones
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polinómicas de orden p conectadas a trozos y definidas sobre una malla de nodos
t0, . . . , ti, . . . , tm. Por otro lado, es importante resaltar que el algoritmo de De Boor
utiliza O(p2) +O(p) operaciones [86] para evaluar la curva spline en forma B-spline.

s(x) =
∑
i

ciBi,p(x) (3.11)

Los polinomios B-spline son positivos en un dominio finito y nulos en el resto de
dominios, de ahí que:

Bi,0 :=

{
1 if ti ≤ x ≤ ti+1

0 de lo contrario
(3.12)

Bi,p(x) =
x− ti
ti+p − ti

Bi,p−1(x)+

ti+p+1 − x

ti+p+1 − ti
Bi+1,p−1(x)

(3.13)

El algoritmo no calcula las funciones B-splineBi,p(x) directamente. En su lugar, eva-
lúa s(x) a través de una ecuación iterativa equivalente. Entonces, se define un con-
junto de Pi como di,r con di,0 para i = k − p, . . . , k, y para r = 1, . . . , p que se aplica
en la siguiente ecuación:

di,r = (1− αi,r)di−1,r−1 + αi,rdi,r−1;

i = k − p+ r, . . . , k

αi,r =
x− ti

ti+1+p−r − ti

(3.14)

Las iteraciones se completan cuando s(x) = dk,p, lo que significa que dk,p es el resul-
tado deseado. Esto permite evaluar diferentes grados de splines.

La Figura 12 muestra un ejemplo de ejecución de curvas spline con diferente orden.
Para este ejemplo Pi = 4 (denotados como puntos azules), de modo que la curva se
construye desde p1 hasta p4. Entonces, la trayectoria final se ve en la línea roja, mien-
tras que las cajas verdes denotan los obstáculos. Las spline calculan la trayectoria
suave a partir de los Pi; sin embargo, en ningún momento se considera la restricción
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de radio curvatura, como se describe en la ecuación (3.7).

(a) Splines de 2nd orden. (b) Splines de 3rd orden.

Figura 12: Curva spline construida con 4 puntos de control.

La Figura 12amuestra una spline de 2nd orden, donde, ρ semuestra fuera de sus lími-
tes (cruz magenta). Este problema se puede resolver moviendo los Pi, con el objetivo
de mantener una trayectoria libre de colisiones. En [87] el problema se resuelve aña-
diendo Pi (es decir, nuevos puntos de control) en zonas críticas entre (p1, p2), (p2, p3)
y (p3, p4).

Por otro lado, la Figura 12b muestra un ejemplo de curva spline de orden 3rd, don-
de, se satisfacen los límites ρ. No obstante, la trayectoria cambia y se producen 2

colisiones (cruz magenta).

Con el objetivo de evitar estas posibles colisiones, se propone una solución que se
enfoca en la modificación de la curvatura en los puntos críticos, es decir, en los luga-
res cercanos de intersección de las líneas rectas que unen pares de Pi. Este enfoque
considera las limitaciones de movimiento del UAV y propone una variación de la
curva 3D a partir de semicircunferencias.

3.3.2 Aproximación de curvatura con semicircunferencias

Si se considera Pi = nP , entonces, existe un conjunto de ecuaciones de una recta
nL = nP − 1, y un conjunto de ángulos entre las rectas nθ = nL − 1. Por lo tanto,
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enfoca en la modificación de la curvatura en los puntos críticos, es decir, en los luga-
res cercanos de intersección de las líneas rectas que unen pares de Pi. Este enfoque
considera las limitaciones de movimiento del UAV y propone una variación de la
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3.3.2 Aproximación de curvatura con semicircunferencias

Si se considera Pi = nP , entonces, existe un conjunto de ecuaciones de una recta
nL = nP − 1, y un conjunto de ángulos entre las rectas nθ = nL − 1. Por lo tanto,
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cada ecuación de recta rL se determina de la siguiente manera:

rLnL
i=2 =




x y 1

P(i)x P(i)y 1

P(i−1)x P(i−1)y 1


 (3.15)

mientras, que el conjunto de ángulos θ se define como:

tan θnθ
i=2 =

∣∣∣∣
m(i) −m(i−1)

1 +m(i) ·m(i−1)

∣∣∣∣

mnθ
i=2 =

P(i)y − P(i−1)y

P(i)x− P(i−1)x

(3.16)

El objetivo es encontrar una forma para localizar una ecuación de circunferencia cE,
definida entre cada par de líneas, siendo:

cEnL−1
i=1 = (x− a)2 + (y − b)2 − r2 (3.17)

manteniendo los Pi de la planificación de la trayectoria y añadiendo una curva suave
con límites ρ entre los puntos críticos, como se describe en la Figura 13.

θ
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θ
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rL1

rL
2

r
L
3

(a) Ángulo formado entre dos líneas.

θ
1

θ
2rL1

rL
2

r
L
3

(b) Aproximación de circunferencias que in-
tersecan 2 líneas.

Figura 13: Aproximación de curva semi-circular con 4 puntos de control.

La metodología se muestra en la Figura 14, y se detalla, a continuación.

1) Ubicar 2 puntos relevantes.- Se ubica un punto PA en dirección rL1 a distancia
de radio de curvatura ρ. Después, se ubica otro punto PB en dirección rL2 a la
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misma distancia de ρ.

2) Líneas perpendiculares.- Se contruye una recta perpendicular RA ⊥ rL1 a partir
del punto PA, y después otra recta RB ⊥ rL2 a partir de PB.

3) Lugar de intersección.- Las rectas RA y RB se intersecan en algún lugar dentro
del plano coor-denado (x, y), punto denotado como e.

4) Determinar el centro de la circunferencia.- Para completar el proceso propuesto,
se han considerado 3 diferentes escenarios para definir el punto central.

a) El caso ideal es cuando el ángulo entre rL1 = rL2 = 90◦, de esta forma
el punto de intersección entre RA y RB determina el nuevo centro de la
circunferencia, como muestra en la Figura 14a. Una nueva intersección
entre esta ecuación de circunferencia y las rectas rL1 y rL2 determina la
nueva traza parcial con un ρ adecuado.

b) Este caso se muestra en la Figura 14b. Si el ángulo θ formado entre rL1 y
rL2 se incrementa, entonces, la distancia d(c,RA∧RB) a la intersección RA ∧
RB se aleja describiendo una curva exponencial, tal que:

f(x) =
(p1 · x2 + p2 · x+ p3)

(x3 + q1 · x2 + q2 · x+ q3)
(3.18)

c) Al igual que en el caso b, existe un ángulo θ formado entre rL1 y rL2,
que disminuye. Esta acción provoca un alejamiento del centro de la cir-
cunferencia hasta la intersección de RA y RB; este cambio de distancia es
exponencial y se ha resuelto con la ecuación (3.18).

Hasta el momento, se ha definido la nueva circunferencia. El siguiente paso es
determinar los puntos de intersección entre las rectas rL1, rL2 y la circunferen-
cia cE. La recta definida en la ecuación (3.15) puede expresarse como un vector−−−→
rLnL

i=2 =
−→
d + γn̂, donde, d es el vector de posición de un punto respecto a una

recta, n̂ es un vector unitario en la dirección de la recta, y λ es un parámetro
que se desliza por los límites de la recta. Por otra parte, una circunferencia vec-
torial expresada por la ecuación (3.17) como (

−−−−→
cEnL−1

i=1 −−→c )2 = r2, donde, −→c es
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misma distancia de ρ.
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misma distancia de ρ.
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Figura 14: Aproximación de la curva semi-circular.

el vector posición del centro de la circunferencia, y r es el radio. Por lo tanto,
la intersección de los dos sistemas se conecta, a partir de:

(−→
d + γn̂− c

)2

= r2 (3.19)
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Cuadro 3.1: Condiciones del entorno de vuelo de prueba para el UAV.

cInit [39,4207,−0,4231, 270] [◦ dec.]
cGoal [39,4457,−0,4337, 180] [◦ dec.]

Dimensiones UAV [2,4, 17,45, 0,42] [m]
radios de curvatura 33 [rad]
velocidad de vuelo 18,16 [m/s]

cabeceo ± 21 [◦ dec.]
alabeo ± 21 [◦ dec.]

Por lo tanto, las posibles soluciones se definen como:

−→x ± =
−→
d +

(
A±

√
A2 − B

)
· n̂

A =
(−→c −

−→
d
)
· n̂

B =
(
d2 + c2 − r2 − 2

−→
d · −→c

)
(3.20)

donde,B determina los posibles puntos de intersección entre las rectas (rL1, rL2)

y la nueva circunferencia cE.

El proceso completo describe la curva en un plano (x, y); sin embargo, la curva con-
tenida en el plano (x, z) se completa al replicar el proceso descrito, con la condición
única de longitud idéntica en el plano (x, y).

3.4 Experimentos y resultados

La tabla 3.1 describe las condiciones del entorno 3D, donde cInit representa el punto
de partida y cGoal es el punto de meta del UAV, descritos en términos de latitud
y longitud. El tamaño completo del entorno en metros es [1180, 2789, 300][m] . Por
otro lado, es importante destacar que los parámetros de altitud son relevantes para
asegurar un vuelo por completo 3D.

A partir del entorno descrito, se ha realizado una modificado, ubicando diversos
obstáculos estáticos en diferentes lugares. La tabla 3.2 muestra la ubicación especi-
ficada de cada obstáculo. La columna [obs] muestra el número de obstáculos en la
escena, la columna [Ubicación] muestra la ubicación geodésica de cada obstáculo y la
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ficada de cada obstáculo. La columna [obs] muestra el número de obstáculos en la
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columna [Dimensiones] muestra las características dimensionales de los obstáculos.

Cuadro 3.2: Obstáculos, características y ubicaciones.

obs
Ubicación Dimensiones

(x, y, z)[m]# lat.◦dec lon.◦dec alt.[m]
1 1 39,4332 −0,4284 0 [13, 26, 30]

2
1 39,4362 −0,4269 150 [11, 22, 35]
2 39,4302 −0,4314 150 [22, 22, 30]

3

1 39,4359 −0,4257 100 [6, 6, 20]
2 39,4293 −0,4323 200 [6, 6, 20]
3 39,4287 −0,4266 130 [13, 13, 30]
4 39,4332 −0,4284 120 [20, 20, 60]

3.4.1 Planificación de trayectorias

A partir del entorno descrito, se ha realizado una modificación, ubicando diversos
obstáculos estáticos en diferentes lugares. La tabla 3.3,muestra la ubicación especi-
ficada de cada obstáculo.La columna [obs] muestra el número de obstáculos en la
escena, la columna [Ubicación] muestra la ubicación geodésica de cada obstáculo y
la columna [Dimensiones] muestra las características dimensionales de los obstácu-
los.

Cuadro 3.3: Resultados de los Planificadores.

escena Iteraciones Distancia
[km]

Vértices Pi

RRT
1 260 3,663 250 89
2 368 3,684 350 90
3 192 3,585 189 87

MACD
1 1016 3,369 378 19
2 616 3,259 336 13
3 808 3,298 414 21

Entonces, a partir de los resultados producidos por el planificador MACD, en la
Figura 15 se muestra los resultados de la trayectoria en la escena 2, Específicamente,
el literal a muestra una vista 3D. Las vistas laterales se muestran en los literales b
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y c. De esta forma, este conjunto de resultados se utiliza para evaluar las curvas
analizadas en la sección 3.3.

Asumiendo velocidades y aceleraciones constantes, la variación de ρ se produce a
partir del ángulo resultante del cálculo de cAct y cNext, donde, cAct es el punto teóri-
co real delUAVen la curva y cNext está determinado por el punto de la curva. En esta
instancia, se ha aplicado el algoritmo De Boore para evaluar las splines de diferentes
órdenes, complementando una comparación con la curva semicircular descrita en la
sección 3.3.2.
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Figura 15: Resultados del Planificador de trayectorias MACD.

La Figura 16 muestra las curvas finales construidas mediante la metodología des-
crita. Donde, la Figura 16a y 16b muestran las vistas laterales de los planos (x, y) y
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(x, z). Los puntos rojos son los Pi, la línea azul es la curva semicircular, las líneas
amarilla, verde y naranja describen el algoritmo de De Boore de orden diferente. Por
otro lado, la figura 16c muestra una ampliación de la parte superior derecha de la
figura 16b, y visualiza los puntos de control p1, p2, p3, p4 y p5. Finalmente, la circun-
ferencia negra punteada muestra el máximo ρ realizable por UAV en vuelo. De esta
forma, se evidencia que para los polinomios de De Boore de orden 3 y 4, se generan
aproximaciones en p2 que superan la capacidad de maniobra del UAV.

Con el objetivo de comprobar la eficacia del metodo descrito, así como los resultados
teóricos, se ha utilizado la herramienta Matlab/Simulink, y el simulador de vuelo
FlightGear [88].

Por otro lado, durante el vuelo se han recogido 186,121 muestras provenientes del
vuelo. Los resultados en variaciones de velocidades y aceleraciones tras finalizar la
trayectoria suave se muestran en los literales a y b de la Figura 17.

Las velocidades y aceleraciones mantienen su valor medio, lo que significa que las
maniobras ejecutadas por el UAV permanecen dentro de su rango de restricción
de movilidad. Por ejemplo, en velocidad de avance horizontal [Vel.x], la media es
cercana a 18[m/s], lo que significa que el UAV mantiene un vuelo continuo.

3.5 Conclusiones

En este capítulo se ha desarrollado una propuesta de construcción de un planificador
de trayectorias suaves para UAV de ala fija, en un espacio euclidiano 3D. Así, el
principal aporte ha sido la inclusión de restricciones y límites de curvatura en la
construcción de las trayectorias.

Dentro del campo de la planificación de trayectorias, una reconstrucción discreta del
entorno ofrece una forma directa de llegar desde cInit hasta cGoal. Por lo tanto, si
los Pi producidos por los planificadores arrojan la distancia adecuada, entonces, el
UAV puede seguir la trayectoria suave final.

En resumen, antes de contruir curvas que sirvan como transición hacia las trayectoria
suaves, es importante tomar en cuenta diferentes características como restricciones
de maniobrabilidad del UAV. Este enfoque brinda apoyo en la trazabilidad, veloci-
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dades constantes y un vuelo continuo, al momento de su implementación y pruebas,
lo que significa la posibilidad de incremento en el tiempo de vuelo del UAV.
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04
Optimización multiobjetivo para 
la construcción de Trayectorias 
suaves 3D

RESUMEN

Este capítulo propone una arquitectura para la construcción de trayectorias de vuelo 
suave 3D para vehículos aéreos no tripulados (UAV) de ala fija. El objetivo es deter-
minar la trayectoria de vuelo factible, minimizando el esfuerzo de giro, partiendo de 
un conjunto de puntos de control en el espacio 3D. A partir de los puntos de control 
definidos y las restricciones de movimiento del UAV, se ha construido una trayecto-
ria que combina un conjunto de segmentos rectilíneos y segmentos de curvas esféri-
cas. Esta metodología conlleva la posibilidad de infinitas soluciones para la construc-
ción de la trayectoria final. Por este motivo, implica también un problema de optimi-
zación multi-objetivo (MOP) que logre maximizar de forma independiente cada uno 
de los radios de giro de la trayectoria. Finalmente, los resultados se contrastan a 
través de simulaciones por medio de MATLAB, Simulink y FlightGear.
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4.1 Introducción

La rama tecnológica de los UAV experimenta un desarrollo constante y vertiginoso
en diversos campos, especialmente en lo relacionado con nuevas técnicas de nave-
gación y guiado. Esta evolución continua responde a nuevos desafíos que plantean
las aplicaciones reales [89, 90, 91].

Es importante destacar que el problema más común en la determinación de trayec-
torias 3D de vuelo suave es la consideración de las restricciones intrínsecas del UAV.
Por lo tanto, la no inclusión de las restricciones cinemáticas y/o dinámicas del UAV
al momento de abordar el problema de planificación de trayectorias puede generar
soluciones no viables que imposibiliten que el UAV complete una trayectoria de for-
ma satisfactoria. Sin embargo, incluir en el diseño todas las restricciones del UAV
en la fase de cálculo puede causar problemas de optimización muy complejos, sin
solución única y con costes computacionales muy elevados.

Este capítulo se centra en la generación de trayectorias suaves, navegables por UAV
de ala fija. Debido a las limitaciones no-holonómicas de los UAV de ala fija, el obje-
tivo es crear una curva tridimensional suave desde un punto inicial hasta un punto
objetivo, a través del espacio euclidiano 3D con o sin obstáculos. Para lograr este
objetivo, es esencial definir una trayectoria factible que minimice el esfuerzo de giro
del vuelo y la distancia recorrida.

El conjunto dePi que definen el espacio libre de colisiones se calcula utilizandoplani-
ficadores de trayectorias específicos, ya sean basados en elmuestreo del entorno con-
tinuo o en el discreto. Algunos ejemplos de estas metodologías son el árbol aleatorio
de exploración rápida (RRT) [92, 93, 94, 95]; las hojas de ruta probabilísticas (PRM)
[96, 97, 98, 99, 100]; planificadores heurísticos (Algoritmos genéticos GA) [101, 102]);
inteligencia de enjambre [103, 104, 105, 106]; lógica difusa [107, 108]; diagramas de
Voronoi [109, 110, 111]; potencial artificial [112, 113, 114, 115]; o la descomposición
celular adaptativa modificada con recompensa recursiva (RR-MACD) [116].

Las técnicas mencionadas, abordan el problema estándar de la planificación de tra-
yectorias, construyendo trayectorias a trozos, ya sea en 2D o 3D. Estos métodos pue-
den proporcionar trayectorias óptimas o casi óptimas; sin embargo, no pueden ga-
rantizar la suavidad y la continuidad en la trayectoria, lo que podría dificultar el
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guiado del UAV a través de las trayectorias. Además, estas técnicas no incorporan
de forma directa las diferentes restricciones operativas del UAV y del entorno. Por lo
tanto, este capítulo propone una metodología para definir trayectorias viables, sua-
ves y navegables por UAV no-holonómicos, en las que se incluye las restricciones
cinemáticas operativas del sistema.

Como punto de partida se determina un conjunto de puntos 3D libres de colisión
Sfree, a partir de una planificación de trayectoria 3D, con los que se construye un
conjunto ordenado de rectas que definen una primera trayectoria. Dicha trayectoria
es posteriormente suavizada, con el objetivo de incorporar la viabilidad y las res-
tricciones del UAV. Las limitaciones del UAV se centran en su capacidad de giro
horizontal y vertical. Por lo tanto, para que el UAV complete una secuencia de giros
a una velocidad definida, debe determinar su radio de giromínimoRp. Si el radio de
giro es demasiado pequeño, el UAV perderá la trayectoria; sin embargo, si el radio
de giro aumenta, el UAV podrá realizar maniobras con menos esfuerzo.

El objetivo es mantener los resultados del planificador 3D y, al mismo tiempo, ge-
nerar un conjunto finito de posibles curvas 3D que optimicen una curva 3D aproxi-
mada. Para ello, se plantea un problema de optimizaciónmultiobjetivo (MOP) [117].
Este planteamiento devuelve como resultado un conjunto de trayectorias que satisfa-
cen las restricciones del UAV, expresadas como soluciones dominantes en un frente
de Pareto de n -dimensiones [118].Por último, se aplica criterios de selección para
determinar la respuesta deseada desde el punto de vista de la curvatura κ y la tor-
sión τ de la curva 3D. Para verificar la funcionalidad de la metodología, se compara
los resultados de las curvas construidas después de la optimización de la curva 3D
con una metodología conocida de aproximación tipo Bézier.

Este capítulo ha sido estructurado de la siguiente forma: en la sección 4.2.1 se pre-
senta da un breve resumen de los conceptos MOP; en la la sección 4.3 se presenta la
formulación del problema; la sección 4.4 detalla la metodología completa para que
resuelve el problema, mientras que, la sección 4.5 detalla los experimentos y resul-
tados de la planificación de trayectorias suaves 3D; por último, las conclusiones se
presentan en la sección 4.6.
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4.2 Preliminares

4.2.1 Optimización multiobjetivo

El concepto de optimizaciónmultiobjetivo es de sencillo entendimiento, pues su pro-
pósito principal es mejorar varios objetivos al mismo tiempo, considerando que op-
timizar varios objetivos en simultaneo es un problema de difícil alcance. Por lo tanto,
la optimización multiobjetivo intenta alcanzar un compromiso entre mejorar ciertos
criterios sin dañar demasiado a los demás. Por ejemplo, si se busca minimizar costos
y maximizar calidad, en este problema, vale señalar que es inevitable sacrificar algo
de calidad sin disminuir costos o viceversa.

Entonces, el problema de optimización (OP) intenta determinar una solución que
represente el valor óptimo (mínimo o máximo) de una función, como f : X → R,
donde, X es un vector de decisión factible, tal que mín(f(x)) : x ∈ X . Sin embargo,
para problemas donde es necesaria la optimización simultánea de más de un objeti-
vo, es decir, optimización multiobjetivo (MOP), la función tiene forma f : x → Rk,
donde, k ≥ 2 es el número de objetivos. Por lo tanto, el vector de valores de la función
objetivo se puede definir como f : X → Rk, f(x) = (f1(x), . . . , fk(x))

T .

Sin embargo, no suele haber una única X que genere un óptimo que satisfaga si-
multáneamente cada uno de los k objetivos, debido al conflicto entre los objetivos.
Entonces, el compromiso es encontrar una situación en la que todos los objetivos
se encuentren satisfactoriamente dentro de unos parámetros aceptables. La solución
MOP conduce a puntos en los que cualquier mejora en un objetivo provoca la de-
gradación de cualquier otro objetivo (uno o varios). Así, estos puntos se representan
como un frente de Pareto [118], donde, todos los puntos del frente son igualmente
óptimos.

Por lo tanto, como se expresa en [117] el MOP puede expresarce como:

mín J(θ) = mín
θ∈D

[J1(θ), J2(θ), . . . , Jm(θ)] (4.1)
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sujeto a:

g(θ) ≤ 0

h(θ) = 0

θil ≤ θi ≤ θiu, i = [1, . . . , n],

(4.2)

donde, θ ∈ Rn es el vector de decisión, D es el espacio de decisión; J(θ) ∈ Rm es
el vector objetivo; g(θ) y h(θ) son los vectores de restricción; y, por último, θil es el
límite superior y θiu es el límite inferior del espacio de decisión. En consecuencia, no
existe un únicomodelo óptimo; de hecho, hay un conjunto de soluciones óptimas con
diferentes compensaciones entre objetivos, entre las cuales ninguna es mejor que las
demás. Utilizando la definición de dominancia, el conjunto ParetoΘP es el conjunto
de cada solución no dominada.

De esta forma, se define la dominancia de Pareto en el caso de que una solución θ1

domine a otra solución θ2; es decir, (θ1 ≺ θ2), si:

∀i ∈ B, Ji(θ
1) ≤ Ji(θ

2) ∧ ∃k ∈ B : Jk(θ
1) < Jk(θ

2), (4.3)

donde, Ji(θ), i ∈ B := [1 . . .m] son los objetivos a optimizar. Por lo tanto, el conjunto
óptimo de Pareto ΘP se define como:

ΘP = θ ∈ D|∄θ̃ ∈ D : θ̃ ≺ θ

J(Θp) = {J(θ)|θ ∈ Θp},
(4.4)

donde,Θp y J(Θp) son soluciones MOP. Sin embargo, en la mayoría de los casos son
inalcanzables porque ΘP normalmente incluye soluciones infinitas. Por tanto, un
conjunto finito deΘ∗

P a partir deΘP y otro conjunto finito de J(Θ∗
p) a partir de J(Θp)

representan soluciones satisfactorias. A partir de J(Θ∗
p), el tomador de decisiones

(DM) selecciona una solución, de acuerdo con las preferencias establecidas.

Por ejemplo, un cierto punto del frente de Pareto que está cerca del punto ideal (tam-
bién llamado punto utópico) Jideal, definido como:

Jideal = {J1 min(θ), . . . , Jm min(θ)}. (4.5)

49



65

sujeto a:

g(θ) ≤ 0

h(θ) = 0

θil ≤ θi ≤ θiu, i = [1, . . . , n],

(4.2)

donde, θ ∈ Rn es el vector de decisión, D es el espacio de decisión; J(θ) ∈ Rm es
el vector objetivo; g(θ) y h(θ) son los vectores de restricción; y, por último, θil es el
límite superior y θiu es el límite inferior del espacio de decisión. En consecuencia, no
existe un únicomodelo óptimo; de hecho, hay un conjunto de soluciones óptimas con
diferentes compensaciones entre objetivos, entre las cuales ninguna es mejor que las
demás. Utilizando la definición de dominancia, el conjunto ParetoΘP es el conjunto
de cada solución no dominada.

De esta forma, se define la dominancia de Pareto en el caso de que una solución θ1

domine a otra solución θ2; es decir, (θ1 ≺ θ2), si:

∀i ∈ B, Ji(θ
1) ≤ Ji(θ

2) ∧ ∃k ∈ B : Jk(θ
1) < Jk(θ

2), (4.3)

donde, Ji(θ), i ∈ B := [1 . . .m] son los objetivos a optimizar. Por lo tanto, el conjunto
óptimo de Pareto ΘP se define como:

ΘP = θ ∈ D|∄θ̃ ∈ D : θ̃ ≺ θ

J(Θp) = {J(θ)|θ ∈ Θp},
(4.4)

donde,Θp y J(Θp) son soluciones MOP. Sin embargo, en la mayoría de los casos son
inalcanzables porque ΘP normalmente incluye soluciones infinitas. Por tanto, un
conjunto finito deΘ∗

P a partir deΘP y otro conjunto finito de J(Θ∗
p) a partir de J(Θp)

representan soluciones satisfactorias. A partir de J(Θ∗
p), el tomador de decisiones

(DM) selecciona una solución, de acuerdo con las preferencias establecidas.

Por ejemplo, un cierto punto del frente de Pareto que está cerca del punto ideal (tam-
bién llamado punto utópico) Jideal, definido como:

Jideal = {J1 min(θ), . . . , Jm min(θ)}. (4.5)

49

De ahí que una metodología apropiada para caracterizar una MOP es el conocido
como algoritmo evolutivo multiobjetivo elitista (ϵ↗−MOGA) [117],que realiza una
aproximación distribuida al frente de Pareto. El objetivo de ϵ↗−MOGA es encontrar
una convergencia distribuida inteligente hacia un conjunto de ϵ-Pareto; es decir, de-
terminar θ∗Pϵ a lo largo del frente de Pareto J(ΘP ). El espacio objetivo se divide en un
número fijo de cajas. Por tanto, para cada dimensión i ∈ B, se crean celdas n_boxi de
ancho ϵi, donde:

ϵi =
(
Jmax
i − Jmin

i

)
/n_boxi

Jmax
i = máx

θ∈Θ∗
Pϵ

Ji(θ), J
min
i = mín

θ∈Θ∗
Pϵ

Ji(θ).
(4.6)

Cada box puede estar ocupada por una única solución; por lo tanto, esta cuadrícula
produce una distribución inteligente y preserva la diversidad de J(Θ∗

Pϵ).

4.3 Definición del problema

Se asume un espacio de trabajo W = R3, en el que es posible definir un conjunto de
obstáculos estáticos o dinámicos como box terrestres o aéreas de diferentes dimen-
siones y ubicaciones (véase la Figura 18). En este espacio, el UAV en vuelo recibe
datos de su estación de control (referentes a las condiciones ambientales) y a partir
de estos se realiza los cálculos necesarios para determinar la mejor trayectoria sua-
ve 3D. Los datos relevantes incluyen el conjunto de puntos de control de vuelo 3D,
ordenados y libres de colisiones ρ = [P1, . . . , P5]. Además, las capacidades intrín-
secas de maniobra están determinadas por un radio de giro Rp (que determina las
limitaciones de giro vertical y horizontal) definido por su velocidad de vuelo.

El objetivo es partir de ρinit y alcanzar ρgoal de tal forma que el UAV se aproxime a la
trayectoria directa marcada por la secuencia ordenada ρ. Por tanto, ρ = Pi(xi, yi, zi),
donde, (i = 1, . . . , n) y n es el conjunto total de espacios libres de colisiónSfree, puede
expresarse como una secuencia de interpolación discreta ρ = f(ti) → R, donde, f(ti)
es un conjunto de nodos en el espacio 3D. En consecuencia, es posible establecer un
conjunto de subintervalos (n−1) entre i = 1 y i = n particionados en [a, b], definidos
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como:

[a, b] = [t1, t2] ∪ [t2, t3] ∪ · · · ∪ [tn−2, tn−1] ∪ [tn−1, tn]

a = t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn = b
(4.7)

Figura 18: Perspectiva del problema de vuelo en 3D para un UAV de ala fija. El
conjunto de puntos libres de colisión Pi se representa mediante puntos naranja; la
línea negra describe la trayectoria discreta construida a partir de la planificación
de trayectorias 3D; la línea verde discontinua representa la nueva trayectoria suave
optimizada, seguible por el UAV.

Una unión lineal entre pares de puntos resulta entonces en LLL : [a, b] → (x, y, z) y
puede expresarse como un conjunto de rectas que marcan una trayectoria de vuelo
directo LLL(t) dividido en (n− 1) trozos.

LLL(t) =




L1(t) : t ∈ [t1, t2]

L2(t) : t ∈ [t2, t3]

...

Ln(t) : t ∈ [tn−1, tn]

LLL(t) = L1(t) + L2(t) + · · ·+ Ln(t).

(4.8)

Por tanto, LLL(t) es una función de interpolación lineal para la secuencia discreta ρ =

f(ti). Asimismo, entre los puntos ρ existe un subconjunto de (n− 1) rectas que unen
el inicio y el final de la trayectoria a lo largo del espacio de vuelo sin colisiones.

Sin embargo, unUAVno-holonómico no puede rea lizar todos los tipos demaniobra
definidas por LLL(t). En general, es deseable realizar maniobras con un radio de giro
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elevado. Por lo tanto, el enfoque presentado construye una trayectoria suave a partir
de ρ, que intenta evitar maniobras inadecuadas utilizando valores bajos de κ y τ ,
incluidos dentro de los límites del giro de vuelo del UAV, al tiempo que se acerca a
la trayectoria LLL(t).

En la Figura 18, el conjunto de puntos libres de colisión Pi se representa mediante
puntos naranja, la línea negra, denotada como LLL(t) muestra la trayectoria directa
entre los puntos libres de colisión del entorno, y la línea verde punteada describe la
curva suave 3D, definida como CCC(t). La construcción de esta curva CCC(t) se realiza
uniendo un conjunto de segmentos que pueden ser de dos tipos: curvas esféricas S
(definidas a partir de una esfera de radio Rp) o rectas LLL. Así, cada segmento S está
definido por tres puntos continuos de ρ; mientras el segmento S tiene dos puntos
de tangencia, uno por cada par de rectas adyacentes LLL(t) formadas por el conjunto
actual de tres puntos de ρ.

Por lo tanto, cada segmento S puede tener infinitas soluciones, con cada radio Rp,
dando lugar a diferentes puntos de tangencia en las rectas LLL(t). En consecuencia,
para cada segmento S se puede definir un conjunto infinito de esferas, que se enla-
zan a través de los segmentosL correspondientes o de otro segmentoS. Obviamente,
este planteamiento del problema sugiere la existencia de infinitas combinaciones pa-
ra los segmentos S y LLL.La forma de abordar esta problemática ha sido mediante el
planteamiento de un MOP.

4.4 Metodología

En esta sección se describe la metodología propuesta para la generación de trayec-
torias suaves en 3D. El método se divide en dos partes, primero se detalla cómo se
obtuvieron los segmentos S y luego se describe la unión con los segmentos LLL.

4.4.1 Definición del segmento esférico

Si se asume una trayectoria discreta definida como el conjunto de puntos libres de
colisión ρ = [P1, . . . , Pn], a partir de la Figura 19 (puntos rojos), entonces, este conjun-
to de puntos se define como: Pi(xi, yi, zi) : i = {1, . . . , n}, donde pinit = Pi(xi, yi, zi) :
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i = {1} y pgoal = Pi(xi, yi, zi) : i = {n}.

El literal b de la Figura 19b muestra una esfera osculante (oS) [119] definida con un
valormínimoRp, situada entre el conjunto de los 3 primerosPi y tangente a las rectas
LLL(t) formadas entre elmismo conjunto dePi. Por tanto, teniendo en cuenta el número
de puntos libres de colisión ρ, el conjunto de esferas es igual aGi : i = {1, . . . , n−2},
como se muestra en el literal c de la figura 19c (vista ortogonal).

El literal b de figura 19b muestra el primer Gi : i = 1 situado entre los tres primeros
Pi. Por lo tanto, es posible definir un plano πi : i = 1 entre los mismos puntos Pi,
que tienen un ángulo en relación con la ubicación del conjunto actual de Pi, como
puede verse en la Figura 20a y 20b. La importancia de la definición de este plano
viene dada por el hecho de que dentro del mismo está contenido el centro deGi con
radio Rp.

De esta forma, existe una curva Si autocontenida (como una serie de puntos a lo
largo del espacio euclídeo) sobre la superficie de la esfera y tangente a LLL(t) con t2 y
t3 en el plano πi, como se muestra en la Figura 20. Por tanto, el segmento de curva Si

(línea negra) se define como:

Si(t) = [Sx, Sy, Sz]

Six = x0 +Rp ∗ sin(ψ) ∗ cos(φ)
Siy = y0 +Rp ∗ sin(ψ) ∗ sin(φ)
Siz = z0 +Rp ∗ cos(ψ)




φ1 ≥ φ ≥ φ2

∧
ψ1 ≤ ψ ≤ ψ2.

(4.9)

donde, x0, y0 y z0 representan el centro de Gi. La curva Si realiza un recorrido hori-
zontal y vertical debido a los rangos angulares de ψ y φ, lo que implica variaciones
en los valores de κ y τ (éstos tienen una conexión directa con Rp y la longitud de
arco de Si).

En consecuencia, si el valor de Rp crece, Si también crece, mientras que κ y τ dismi-
nuyen.

Es importante remarcar que si el plano πi es paralelo al plano horizontal (x, y) del
entorno, entonces τ = 0, lo que implica que los movimientos del UAV sean horizon-
tales. Del mismo modo, si πi es paralelo al plano vertical (x, z) del entorno, entonces
κ = 0.
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Figura 19: Problema de planificación de trayectorias suave. Los puntos rojos repre-
sentan ρ, la línea azul es la trayectoria formada por rectas LLL(t). (a) Puntos libres de
colisión ρ. (b) Definición de esfera con una relación del mínimo Rp. (c) Conjunto de
Gi sobre ρ. (d) Ejemplo de trayectoria suave óptima, con κ y τ optimizados en líneas
verdes discontínuas.

Sin embargo, antes de aplicar la ecuación (4.9), es necesario determinar la situación
de los puntos (x0, y0, z0), de modo que Gi sea tangente en un punto de su superficie
con LLL(t), como se muestra en la Figura 19b en los puntos (t2 y t3). No obstante, se
debe considerar que existe un ángulo entre cada par de LLL(t), y esto hace que Gi se
acerque o se aleje de las rectas y sus puntos tangentes. El análisis geométrico aplicado
para llegar a una solución óptima se detalla a continuación.

En primer lugar, una dirección vectorial en el espacio puede definirse como −→v =

p − q : p ∧ q ∈ R3. Por tanto, partiendo de los datos conocidos ρ = [PPP 1, . . . , Pn],
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Figura 20: Trayectoria esférica suave, la línea negra muestra la curva en un segmen-
to Si a lo largo del plano πi. Las líneas rojas muestran la unión desde el centro de
coordenadas de la esfera hasta los puntos de intersección entre la esfera y el plano πi

resultante de la semicurva esférica. (a) Vista perpendicular al plano horizontal (x, y).
(b) Vista perpendicular al plano vertical (x, z).

tomando como ejemplo la Figura 19, donde se asume que los puntos iniciales libres
de colisión se definen como (PPP i : {i = 1, . . . , 3}), determinan un primer conjunto de
dos vectores como:

−→u i = p− q : p = P(i+1), q = P(i)

−→v i = p− q : p = P(i+1), q = P(i+2)

}
, i = 1 (4.10)

De la misma forma, un vector perpendicular desde−→u i hasta−→v i, denotado como−→η ,
define el vector normal, tal que:

−→η = −→u i ×−→v i. (4.11)

En consecuencia, la ecuación paramétrica del plano πi que contiene tres puntos se
define como:
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πi =



(x− px)

(y − py)

(z − pz)


 ∗ [−→η ]





:



px = P(i+1)x

py = P(i+1)y

pz = P(i+1)z




(4.12)

Del mismo modo, la distancia euclídea definida entre dos puntos p y q viene dada
por:

d(p, q) =
√∑

(p− q)2 (4.13)

Por lo tanto, se pueden expresar dos distancias como duj : p = P(i+1), q = P(i) y
dvj : p = P(i+1), q = P(i+2). Por último, el ángulo entre −→v i y −→u i se define por:

∠(−→u i,
−→v i) = ϕi = tan−1 ||

−→u i ×−→v i||
−→u i · −→v i

. (4.14)

Por lo tanto, con la ecuación (4.14) y conocido el valor deRp, los puntos tangenciales
a las rectas LLL(t) pueden localizarse a una distancia definida como:

σi =
Rp

ϕi/2
. (4.15)

De este modo, dos puntos espaciales definidos como pUii y pUgi, situados en la di-
rección del vector −→u i proporcionan Pi = Pi+1, y Pg = Pi y d(p, q) = dui; por tanto:

γ = σi/d(p, q)

pUij = (Pi − Pg) ∗ γ + Pi

pUgj = −(Pi − Pg) ∗ γ + Pi

(4.16)

Del mismo modo, se pueden definir dos puntos pV ii y pV gi en la dirección vectorial
−→v i, siempre que Pi = Pi+1, Pg = Pi+2 y d(p, q) = dvi, según la ecuación (4.16). De
modo que, la bisectriz perpendicular de pUii y pV ii en el plano πi determina el centro
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de la esfera (x0, y0, z0). El literal a de la Figura 21a muestra la aplicación de las ecua-
ciones (4.10), (4.11), que pueden repetirse a lo largo de los sucesivos puntos libres de
colisión ρ. Entre los centros de las esferas (x0, y0, z0) y los puntos de intersección con
LLL(t) se encuentran los ángulos de desplazamiento φ y ψ de los segmentos Si, como
puede verse en la Figura 20, donde pUii = t2 y pV ii = t3.

Es importante remarcar que, independientemente de la condición angular producida
por el par de rectas LLL(t) denotado en la ecuación (4.14), el ángulo formado entre los
puntos de intersección sobre la esfera Gi, vista desde su centro hacia la componente
vertical u horizontal, no supera en ningún caso 90o; es decir, (0o < φ < 90o) y (0o <

ψ < 90o).

El proceso descrito muestra el análisis geométrico para la localización del conjunto
de esferas Gi definidas con radio constante Rp, como puede verse en la Figura 19c.
Además, existe un conjunto de cuatro segmentos S y otro conjunto de cinco seg-
mentosLLL, siendo los segmentos S los comprendidos por los intervalos [t2, t3], [t4, t5],
[t6, t7] y [t8, t9], mientras que los segmentosLLL están incluidos en los intervalos [t1, t2],
[t3, t4], [t5, t6], [t7, t8] y [t9, t10]. El objetivo es aumentar el radio Rp en cada segmento,
de modo que se minimicen los valores de κ y τ a lo largo de la curva, aumentando
el radio Rpi en cada Gi.

La solución adoptada consiste en desplazar el punto de intersección de cada esfera
Gi en la dirección del segmento adyacente LLL(t). En consecuencia, Gi : i = 1, se
aproxima de forma simétrica a los intervalos t1 y t4, entonces, Gi : i = 2 realiza la
correspondiente aproximación a los intervalos t3 y t6, y así de forma sucesiva. Por
tanto, en la Figura 21b, los segmentos LLL(t) pueden verse adyacentes a Gi : i = 1,
denotados como [t1 ≡ P1, t2 ≡ pUij, t3 ≡ pV ij, t4 ≡ pV gj].
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el radio Rpi en cada Gi.

La solución adoptada consiste en desplazar el punto de intersección de cada esfera
Gi en la dirección del segmento adyacente LLL(t). En consecuencia, Gi : i = 1, se
aproxima de forma simétrica a los intervalos t1 y t4, entonces, Gi : i = 2 realiza la
correspondiente aproximación a los intervalos t3 y t6, y así de forma sucesiva. Por
tanto, en la Figura 21b, los segmentos LLL(t) pueden verse adyacentes a Gi : i = 1,
denotados como [t1 ≡ P1, t2 ≡ pUij, t3 ≡ pV ij, t4 ≡ pV gj].
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(a)

(b)

Figura 21: El círculo negro discontinuo muestra la esfera osculante (oS); la línea ver-
de es el radio de giroRpi. (a) Situación deGi con radio de giromí-nimo. (b) Situación
deGi con radio de giro superior desplazado dentro de los límites [t1, t2], definido por
el valor de θi.
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Así, entre los intervalos adyacentes [t1, t2] se define un vector −→u i = t2 − t1, asociado
a este vector se establece un punto espacial pi definido por la ecuación paramétrica:

La solución adoptada consiste en desplazar el punto de intersección de cada esfera
Gi en la dirección del segmento adyacente LLL(t). En consecuencia, Gi : i = 1, se
aproxima de forma simétrica a los intervalos t1 y t4, entonces, Gi : i = 2 realiza la
correspondiente aproximación a los intervalos t3 y t6, y así de forma sucesiva. Por
tanto,en el literal b de la Figura 21b, los segmentos LLL(t) pueden verse adyacentes a
Gi : i = 1, denotados como [t1 ≡ P1, t2 ≡ pUij, t3 ≡ pV ij, t4 ≡ pV gj].

Así, entre los intervalos adyacentes [t1, t2] se define un vector −→u i = t2 − t1, asociado
a este vector se establece un punto espacial pi definido por la ecuación paramétrica:

pix = t2x + θi ∗ −→u ix

piy = t2y + θi ∗ −→u iy

piz = t2z + θi ∗ −→u iz




, 0 ≤ θi ≤ 1 (4.17)

donde, θi define el punto espacial pi a lo largo de−→ui y dentro de los intervalos [t1, t2].
Por lo tanto, el valor de la distancia σi desde Pi+1 hasta pi se define según la ecuación
en (4.13), siendo, p = Pi+1 y q = pi+2. Se define unpunto del espacio simbólico qi entre
los intervalos [t3, t4] con dirección −→vi = t3 − t4 a la misma distancia σi. Entonces, σi

también posee un ángulo ϕi, y según la ecuación (4.14), es posible definir un nuevo
Rpi a partir de la ecuación (4.15), la que tiene un valor de radio mayor. Por último, la
bisectriz perpendicular de pi y qi en el plano πi determina el centro de Gi(x0, y0, z0)

(ver Figura 21b). Por lo tanto, el centro deGi definide la ecuación (4.9) en el segmento
Si y sobre este segmento se determinan los valores inferiores de κ y τ según las
ecuaciones (2.6) y (2.10).

Definición del problema multiobjetivo (MOP)

Dada la ecuación (4.17), es importante señalar que cualquier valor de θi entre 0 y 1,
define un punto espacial entre el intervalo [t1, t2]. Del mismo modo, es importante
resaltar que dentro de los límites de θi, existe un número infinito de puntos espaciales
con un número infinito de radios Rpi y su correspondiente número infinito de Gi,
con los que se construye los correspondientes segmentos Si.
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Por este motivo, para obtener una solución óptima, se ha resuelto el MOP mediante
algoritmos evolutivos basados en el concepto de ϵ-dominancia [120, 121]. Para lo que
se ha definido variables de decisión, condiciones iniciales del proceso, restricciones
delMOP y el vector índice a optimizar para representar el frente de Pareto. Entonces,
si se supone que el número de esferas Gi es igual a m, y el número de objetivos
para cada Gi igual a dos, entonces, J ideal(θ) = [J1(θ), J2(θ), . . . , J2∗m(θ)] representa
el vector de objetivos, donde, Ji denota el iesimo objetivo. En consecuencia, JA

i =

mín(κ(θi), JB
i = mín(τ(θi)) ∈ Gi : [i = 1, . . . ,m], donde, JA

i y JB
i dependen del

vector de variables de decisión θ. AsumiendoD como un espacio de decisión dentro
de un subconjuntoRD, siendo, θ el vector de variables de decisión compuesto por un
conjunto de θi para todo i ∈ 1 < i < m, con θi es [0, 1]D. En consecuencia, el problema
MOP puede enunciarse como:

mín
θ∈D

[JA
i (θ), J

B
i (θ)]1×(2∗m)

, ∀i ∈ 1 ≤ i ≤ m. (4.18)

donde:

JA
i =

∥S ′
i(t)× S ′′

i (t)∥
∥S ′

i(t)∥3

JB
i =

S ′
i(t) · [S ′′

i (t)× S ′′′
i (t)]

∥S ′
i(t)× S ′′

i (t)∥2

θ = [θi]1×m , ∀i ∈ 1 ≤ i ≤ m
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sujeto a:

Si(t) =





Six = x0 +Rpi ∗ sin(ψ) ∗ cos(φ)
Siy = y0 +Rpi ∗ sin(ψ) ∗ sin(φ)
Siz = z0 +Rpi ∗ cos(ψ)

,

desde ec. (4.9)

Rpi = σi ∗ (ϕi/2), desde ec. (4.15)

σi =
√∑

(pi − Pi+1)2, desde ec. (4.13)

pi =




pix = t2x + θi ∗ −→u ix

piy = t2y + θi ∗ −→u iy

piz = t2z + θi ∗ −→u iz

, desde ec. (4.17)

θi ∈ [0, 1]D

En resumen, el objetivo es encontrar una curva suave 3D óptima que minimice κ y τ

en cada una de las posibles Si. Es importante mencionar que las esferas adyacentes
Gi pueden crecer una dentro de la otra, hasta que un máximo de qi ∈ −→vi ≡ pi+1 ∈ −→ui ,
lo que implica una disminución del conjunto total de segmentos, como describe la
Figura 19d, donde la línea verde discontinua muestra el conjunto de segmentos Si

pertenecientes a Gi.

Un ejemplo de reconstrucción según la respuesta Θ∗
P puede verse en el literal b de

Figura 20b, donde la reconstrucción S se realiza en cuatro segmentos, definidos por
las fronteras [t2, t3], [t4, t5], [t5, t6] y [t7, t8]. Los segmentos S pertenecientes a CCC(t) se
definen según la ecuación (4.9).

En contraste, y con referencia a la Figura 19d, los segmentosLLL están definidos por el
resto de los límites, siendo tales límites [t1, t2], [t3, t4], [t6, t7] y [t8, t9].

4.4.2 Definición de segmentos de línea recta

Una trayectoria de tipo línea recta LLL puede describirse mediante dos puntos en el
espacio euclídeo. El literal d de la Figura 19d muestra un ejemplo de un segmento
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LLL definido por los puntos [t1, t2], donde, la dirección de la línea está dada por la tra-
yectoria de vuelo del UAV. Por tanto, −→u (ver la Figura 22) es un vector unitario que
apunta en la dirección de la orientación deseada, y con d definido como la distancia
entre t1 y t2 según la ecuación (4.13). Por tanto, los segmentos LLL se describirán, en
general, como:

LLL(t) = {r ∈ R3 : r = (t1 − t2) ∗ γ − t1}

→ 0 ≤ γ ≤ d
(4.19)

Finalmente, la interpolación de S yLLL construye una curva suave 3D final en el plano
(x, y, z).

Figura 22: Segmento de línea recta.

4.5 Experimentos y resultados

MATLAB/Simulink y el simulador de vuelo flightGear han sido las herramientas
de apoyo para la presentación de los resultados de simulación por ordenador. En
este sentido, se ha realizado el análisis de cinco escenarios en el espacio 3D, toma-
dos a partir de la metodología propuesta en [122]. La metodología RR-MACD ofrece
dos conjuntos de resultados basados en las restricciones definidas. Los resultados
presentados en [122] se muestran de forma resumida en la Tabla 4.1, donde la pri-
mera columnamuestra el número de escenario. La segunda columnamuestra el RR-
MACD con cuatro restricciones y el RR-MACD con 10 restricciones; en cambio, en la
tercera columna se muestran las condiciones para resolver el problema de planifica-
ción de trayectorias. Los puntos de control 3D reflejados en la Tabla 4.1, ρx(F ) ≈ ρ,
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son los puntos de partida para la construcción de curvas suaves 3D, además, del
análisis del método descrito en este capítulo.

Por último, es importante señalar que los algoritmos se han ejecutado en una CPU
Intel(R) Core(TM) i7− 4790 a 3, 60 GHz (Fabricante: Gigabyte Technology Co., Ltd.,
Modelo: B85M −D3H) con 8Gb de RAM y S.O. Ubuntu Linux 16,04 LTS. Los algo-
ritmos se programaron en MATLAB versión 9,4,0,813654 (R2018a).

Cuadro 4.1: Resultados de la planificación de trayectorias 3D. El número de espacios
colisión libre se definen como Sfree, mientras que el número de nodos 3D discretos
se denotan por ρx(F ) [122].

Env.
4 Restricciones
RR-MACD

10 Restricciones
RR-MACD

#Sfree #ρx(F ) #Sfree #ρx(F )

# 1 115 18 202 27
# 2 27 8 35 10
# 3 19 6 16 7
# 4 11 6 51 10
# 5 19 7 35 10

Es importante mencionar que las características del UAV asumidas en los experi-
mentos han sido tomadas de [123], un estudio sobre el UAV de ala fija kadett 2400,
representado por seis estados (x, y, z, ϕ, θ, ψ)donde los tres primeros estados definen
el vector de posición del sistema de coordenadas global del UAV,situado en el ori-
gen de su centro de gravedad. Los tres últimos son los ángulos de Euler de balanceo,
cabeceo y guiñada, respectivamente, que definen la orientación del UAV.

Por último, las simulaciones han mostrado que el UAVmantiene un vuelo continuo
a una velocidad constante de 18[m/s], dentro de un radio de curvatura mínimo esta-
blecido comoRp = 33[m], lo quemuestra un comportamiento suave y sinmaniobras
que puedan poner en peligro la integridad del avión.

Es importante recordar que, debido a que en el ejemplo específico de análisis el nú-
mero de puntos libres de colisión ρx(F ) = [P1, . . . , Pn] es superior a cinco, es necesa-
rio un método de visualización adecuado para la toma de decisiones en la solución
final. Por ello, se ha utilizado el método de representación gráfica denominado dia-
grama de niveles [124], que consiste en representar cada objetivo y cada parámetro
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de diseño en diagramas separados, sincronizados con su eje y. La sincronización se
realiza con distancia normalizada de cada punto del frente de Pareto hasta punto
ideal.

4.5.1 Ejemplo aplicativo

Para representar los resultados visuales y numéricos de la Tabla 4.1, a continuación,
se detalla los resultados para el entorno #3 provenientes de con RR-MACD con cua-
tro restricciones. Como en este ejemplo, el número de Pi es igual a 6, entonces, el
número de criterios de decisión de la Ecuación (4.18)→ m = 4. Por lo tanto, existen
cuatro valores de κ y cuatro valores de τ ; es decir, Θ∗

p = (J1(θ1) = κ1, J3(θ2) = κ2,
J5(θ3) = κ3, J7(θ4) = κ4, J2(θ1) = τ1, J4(θ2) = τ2, J6(θ3) = τ3 y J8(θ4) = τ4), como
puede verse en la Figura 23.

Es importante destacar que la interpolación de los segmentos S y LLL construye un
conjunto de curvas suaves 3D, y todas representan posibles soluciones. Por lo tan-
to, es necesario abordar una etapa de decisión (DM) que seleccione una de ellas; es
decir, un punto en el frente de Pareto. En este trabajo se ha utilizado los criterios
de selección basados en la menor distancia hasta el punto ideal. Las Figuras 23 y
25 muestran en rojo, el punto seleccionado de J(Θ∗

p) y Θ∗
p, que ha sido seleccionado

utilizando la norma∞.

La Figura 24a muestra la construcción de la curva 3D suave CCC(t), mientras que la
Figura 24b muestra la mejor optimización en términos de κ y τ , manteniendo una
media matemática baja para estas variables geométricas. Sin embargo, en algunos
casos particulares se detecta un aumento debido al cambio de dirección del vuelo. La
curva generada por Bézier B(t) se muestra como una línea amarilla, además puede
verse una ruta más directa entre el punto de cInit y cGoal. Sin embargo, esta curva
se acerca al obstáculo del fondo. Para solucionar esto, diferentes autores proponen
modificar los puntos de control ρ, o añaden nuevos puntos dentro de los puntos
inicialmente definidos.

La Figura 26 muestra un conjunto de cuatro ejemplos adicionales a partir de la Tabla
4.1, donde se representa la funcionalidad del algoritmo. Es importante señalar que
el número de ρ fue diferente en cada experimento, así como las altitudes, lo que ga-
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rantizó la planificación 3D. También es importantemencionar que el primer entorno
mostrado en el literal a de la Figura 26a posee características dimensionales de vuelo
menores, por lo que el radio de giro en este ejemplo se fijó en Rp = 3[m] con una
velocidad media de vuelo de 1, 7[m/s].
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Con el objetivo de realizar una descripción de los diferentes grupos de trayectorias
construidas porLLL(t),CCC(t) o B(t), en la Figura 26, y en las Tablas 4.2 y 4.3 se muestra
los resultados del vuelo desde el punto cInit hasta cGoal en términos de distancias, a
partir de uno de los resultados de cada entorno establecido en la Tabla 4.1. Se puede
observar que el conjunto de mayores distancias, correspondientes a la trayectoria
en forma de línea recta marcada por LLL(t), CCC(t) reduce la distancia en LLL(t). Dado
que B(t) hace una aproximación (como expresión matemática) entre el conjunto de
ρ de cada entorno, entonces, se contruye trayectorias más corta. La columna “EAA
Error (metros)”muestra el error absoluto aproximadoEAA = 1

n

∑n
i=1 |A−B|, donde

A = LLL(t) y B = CCC(t) ∧ B = B(t). Por lo tanto, los resultados de la columna “EAA
Error (metros)” muestra una mayor aproximación a CCC(t), lo que se traduce en una
mejor evasión de obstáculos.

Del mismo modo, la Tabla 4.4 muestra un conjunto de resultados de los cinco entor-
nos analizados. Los promedios de κ y τ generados a lo largo de cada curva suave
muestran queB(t)B(t)B(t) supera aCCC(t). Sin embargo, en el primer entorno se produce una
colisión provocada por la curva B(t).

Cuadro 4.2: Distancias de vuelo. Muestra la distancia en me-tros en los puntos de
colisión libre, cInit y cGoal marcados con ρ.

Distancia de vuelo [m]
L(t) CCC(t) B(t)

#1 182,929355 174,002834 148,911388
#2 1728,757868 1610,781941 1453,060601
#3 1863,391222 1721,505017 1526,055284
#4 1936,078758 1860,263202 1772,944453
#5 1873,814514 1839,965587 1743,723244

Finalmente, los resultados producidos por la simu-lación de vuelo del UAV Kaddet
2400 realizada por medio de Matlab/Simulink/FlightGear, sobre el entorno #3 se
muestran en la Figura 27. Las coordenadas geodésicas de la Figura 27a se expresan
en grados decimales. En este ejemplo, el vuelo comienza con una altitud de 500,4

[m], y tras las maniobras realizadas por el UAV, alcanzan una nueva altitud de 603,1
[m]. El literal b de la Figura 27b muestra el modelo del UAV en vuelo.
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Figura 24: Ejemplo de un entorno 3D con obstáculos. (a) Reconstrucción de trayec-
torias 3D. (b) Medias geométricas de las variables κ y τ de la trayectoria final.
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Cuadro 4.3: Error AEA [m]. Muestra el error medio en metros a lo largo de las tra-
yectorias.

EAA Error [m]
Env. L(t) vs CCC(t) L(t) vs B(t)
#1 0.622684 3.248545
#2 17.234613 41.453691
#3 14.600159 56.678212
#4 9.871725 36.617234
#5 9.891240 36.614752

Cuadro 4.4: Resultados promedio de κ y τ a lo largo de las curvas CCC(t) y B(t)B(t)B(t). La
columna “Colisión” de la trayectoria contra un obstáculo se muestra como positiva
(x), o negativa (o).

Curva κ τ Colisión

#1 CCC(t) 0,157961 0,185973 o
B(t) 0,019513 0,092539 x

#2 CCC(t) 0,007138 0,159732 o
B(t) 0,001082 0,006652 o

#3 CCC(t) 0,004556 0,185806 o
B(t) 0,001068 0,004442 o

#4 CCC(t) 0,003445 0,574121 o
B(t) 0,000812 0,003332 o

#5 CCC(t) 0,004515 0,135183 o
B(t) 0,000643 0,004253 o
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Figura 26: Experimentos adicionales de entornos 3D. (a) (Tabla 4.1 Entorno #1.) Re-
presenta un entorno desestructurado con diferentes edificios, donde se aprecia una
colisión entre B(t) y un edificio (colisión marcada como una circunferencia de color
magenta). (b) (Tabla 4.1 Entorno #2.) Entorno 3D con dos obstáculos de diferentes
tamaños. (c) (Tabla 4.1 Entorno #4.) Entorno 3D con dos obstáculos de diferentes ta-
maños. (d) (Tabla 4.1 Entorno #5.) Entorno 3D con tres pequeños obstáculos aéreos.
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Figura 27: Simulación de vuelo. (a) Vuelo del UAV, la línea azul es la trayectoria
calculada a partir del proceso descrito y la línea roja es la trayectoria real del UAV.
(b) Vista desde la perspectiva de vuelo del simulador.

4.6 Conclusiones y trabajos futuros

En este trabajo se describe un enfoque para la generación de trayectorias suaves con-
tinuas 3D, construidas a partir de las limitaciones operativas del vehículo aéreo no
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tripulados de ala fija.

El capítulo realiza una descripción de la construcción de trayectorias suavesmedian-
te la definición de dos tipos de segmentos. El primer tipo se define como segmentos
esféricos S, que garantizan un perfil continuo y de curvatura mínima. El segundo ti-
po se define como segmentosLLL y se trata de aquellos que se conectan generalmente
con S.

Para obtener los valores numéricos de los parámetros de la trayectoria, se ha plantea-
do la resolución de unMOP,dado que el problema tiene infinitas soluciones factibles.
En la resolución delMOP, durante la la etapa de DM, es esencial seleccionar el punto
deseado del conjunto Pareto de soluciones óptimas.

Es importante recordar que conmétodos como las curvas clásicas Bézier o B-splines,
se puede definir el número de muestras a lo largo de la trayectoria. Sin embargo, la
distancia medida entre un punto y el siguiente no es la misma,de modo que la di-
ferencia puede ser grande. Este tipo de curvas son útiles en entornos relativamente
sencillos con pocos obstáculos; sin embargo, a medida que crece el número de obs-
táculos, los puntos de control aumentan debido a la planificación de la trayectoria.
En consecuencia, la construcción de la curva puede provocar colisiones.

El capítulo ha considerado las restricciones cinemáticas del UAV. En este sentido,
una consideración importante que puede mejorar la construcción de nuevas trayec-
torias es incrementar las variables matemáticas como el consumo de energía o los
datos incompletos en entornos dinámicos.
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