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Preambulo

Este libro realiza un primer conjunto de propuestas orientadas a la construcciéon de
trayectorias suaves para entornos euclidianos tridimensionales. Dichas trayectorias
se emplean con el objetivo de proporcionar una guia para el seguimiento de vuelo
para vehiculos aéreos no tripulados (UAV o unmaned aerial vehicle en inglés, de
donde vienen sus siglas ) con caracteristicas no-holonémicas (aviones de ala fija).
Las trayectorias desarrolladas buscan reducir posibles movimientos bruscos durante
el vuelo de este tipo de aeronaves. En este marco, en el libro se aborda diferentes

tematicas, incluyendo las siguientes:

- Curvas suaves

- Curvas Bézier

- Curvas clotoides 3D

- Trayectorias suaves 3D

- Optimizacién multiobjetivo

La teoria y matematica desarrollada y propuesta en este libro intenta ser simple y
de facil entendimiento. En este sentido, se trabaja un nivel matematico razonable-
mente simple,confiando en la intuicién del lector. Finalmente, se presenta diversos
experimentos que han probado de forma satisfactoria los algoritmos planteados, por

medio de plataforma de programacion y célculo numérico MATLAB™™ 1,

El libro presenta un enfoque académico apropiado para la introduccién y el estudio

de la planificacion de trayectoria suave 3D, para ingenieros que buscan alcanzar
nuevos entendimientos y métodos en esta rama de la ciencia en automatizacién y

robdtica.

IMatlab es una marca registrada de Math Works, Inc.
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Los contenidos de este libro estdn fuertemente ligados a 2 trabajos doctorales, que
fueron realizados en la Universidad Politécnica de Valencia (UPV), en el Instituto
de Automatica e Informatica Industrial (ai2), y en el Departamento de Ingenieria de
Sistemas y Automatica (DISA).

Es importante destacar y resaltar el apoyo brindado por la Pontificia Universidad
Catolica del Ecuador - Sede Ambato, ya que sin su soporte no habria sido posible
culminar la publicaciéon de este trabajo.Por este motivo, les extendemos nuestro sin-

cero sentimiento de agradecimiento y estima.

Finalmente, es importante resaltar que este libro presenta el primer volumen de
nuestro trabajo. De modo que, en el segundo volumen se presentara contribucio-
nes orientadas al desarrollo algoritmico, matematico y experimental implicado en la

planificacion de trayectoria suave 3D.
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Introduccion




En los dltimos afos se han producido diversas e importantes aplicaciones que bus-
can completar la tarea de planificacién de trayectoria suave y navegacién aérea en el
espacio tridimensional 3D. De manera similar, se ha desarrollado diversos e impor-
tantes avances practicos en el desarrollo de UAV (vehiculos aéreos no tripulados o
drones), asi como en la navegacion autonoma,que han sido presentados y aceptados
en la comunidad cientifica. De ahi que, en la actualidad, debido a la transforma-
cion digital y la automatizacion, el estudio y la investigacion de UAV adquieren una
relevancia estratégica por su impacto en diversos &mbitos.Entre estos avances,vale
sefialar aquellos enfocados en la competitividad, por medio de innovaciones en in-
teligencia artificial, sensores, navegacion auténoma y eficiencia energética, que han

posicionado a paises y empresas a la vanguardia de la industria 4.0.

En este contexto, el impacto econémico relacionado con esta tecnologia implica la
generacion de empleos en sectores emergentes, enfocados en pilotos, desarrollado-
res de software o analistas de datos. Estos aspectos fortalecen las cadenas de valor
relacionadas con la manufactura y los servicios. Por este motivo, invertir en tecnolo-
gia UAV no solo optimiza procesos criticos, sino que también impulsa la soberania
tecnoldgica y la solucién de los desafios sociales y ambientales. Ahora bien, dicho
proposito requiere de la colaboracion de gobiernos, academia y sector privado con
el objetivo de maximizar beneficios y mitigar riesgos.

1.1 Aplicaciones UAV

Los avances y aportes cientificos relacionados directamente con el desarrollo de UAV

son amplios y relevantes. A continuacion, se describe de forma breve un conjunto
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de trabajos disponibles. Uno de ellos, el trabajo realizado por Niven [1],], detalla el
desarrollo de un UAV de ala fija construido con materiales compuestos (fibra de
carbono y espuma de PVC). Este disefio integra una camara multiespectral con el

objetivo de completar misiones de mapeo aéreo.

El trabajo presentado por Esakki aprovecha las técnicas de fabricacion aditiva (AM)
para la fabricaciéon de un cuerpo unificado del bastidor de un quadrotor para mi-
nimizar el tiempo de montaje [2]. Por otra parte, Chung [3] describe la propuesta
de un vehiculo hibrido que combina despegue vertical (VITOL) con vuelo eficiente
en crucero. Este prototipo usa motores eléctricos y una célula de combustible de hi-
drégeno, alcanzando 120 km de autonomia. Este disefio y su posterior fabricacion
han generado diferentes resultados atractivos en cuanto a la propulsién eléctrica, lo
que ha permitido definir los requisitos de rendimiento, incluyendo la velocidad de
pérdida, la velocidad maxima, la altitud de crucero y el radio y la velocidad de giro.
Ademas, la carga alar y la carga de potencia asociada se obtienen a partir de los re-
quisitos de rendimiento. De forma similar, el trabajo presentado por Yuan describe
el disefio y construccién de un dron de tipo cuadricoptero, para lo cual se utiliza di-
ferentes componentes comerciales de bajo costo y que posee una capacidad de carga

atil de hasta 500g con una autonomia de 15 minutos. [4].

En Mingjie [5] | se sintetiza el disefio tipico de los UAV de ala fija VTOL en modo de
vuelo plano. A la vez, se realiza una breve descripcion de las diferencias en cuanto al
modo de despegue y potencia. Por otro lado, Hakim [6] presenta estudio y desarro-
llo de un UAV de ala fija para realizar tareas implicadas en el proceso de vigilancia,
cartografia y lanzamiento. Como resultado de este proceso de cartografia, se gene-
ra datos fotograficos que se convierten en un mapa ortofotografico. En cambio, el
estudio presentado por Yixuan describe el disefio y la fabricacion de un UAV renta-
ble para fines logisticos, construido principalmente con materiales de madera y con
capacidad de carga til de hasta 1.000g a una altitud de 40 m. [7].

El trabajo presentado por Gu en [8]describe el desarrollo integral de un sistema de
tipo UAV VTOL, desde los aspectos que incluyen el disefio y la implementaciéon de
la aeronave, la integracion de los dispositivos de a bordo, el soporte de la estacién de
tierra y la comunicacién a larga distancia. Ademas, incluye el analisis aerodinamico,

el disefio mecénico y el desarrollo del controlador. Por altimo, este desarrollo se
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valida por medio de experimentos aerodindmicos relacionados con la estabilidad de

vuelo, la resistencia y la autonomia deseada.

Chipade [9] expone el disefio conceptual y la demostracion de vuelo de prueba de
un novedoso UAV biplano cuadricéptero de paso variable. Este disefio combina las
capacidades de despegue y aterrizaje vertical (VTOL) y de planeo de un cuadricép-
tero con las caracteristicas de autonomia, resistencia y alta velocidad de crucero de
una aeronave de ala fija. Ademas, se describe una misién de transporte y entrega de

6 kg de carga ttil a un destino situado a 16 km del punto de origen.

Oliveira [10] disefia e implementa una plataforma de prototipado rapido multivehicu-
lo. El objetivo del trabajo es apoyar al desarrollo y las pruebas de control y navega-
cion para UAV. De ahi que, la arquitectura de hardware concebida para el entorno
de prototipado incluya un sistema 6ptico de captura de movimiento y un conjunto
de ordenadores externos que gestionan la comunicacién entre sistemas y ejecutan

programas de usuario para varios quadrotors.

En estos trabajos, se puede apreciar una amplia difusion de las aplicaciones de UAv
para el mercado. Este hecho ha permitido el desarrollo de algoritmos cada vez mas

rapidos con respuestas robustas.

Por otro lado, como se detalla en este libro, el uso y la aplicacién de las metodologias
revisadas permite asimilar de forma clara los conceptos implicados en la resolucion
del problema de planificacién de trayectorias suaves. De esta manera, se intenta al-
canzar un aprendizaje continuo, con el apoyo de diversos experimentos practicos en

diferentes escenarios.

1.2 Planificacion de trayectoria

El problema de la planificacion de trayectorias puede ser definido como la determi-
nacion de un camino por el que un robot mévil se desplaza. El objetivo es determinar
el conjunto de espacios libres de colisién dentro de un ambiente o entorno de trabajo
(es decir, el espacio euclidiano definido en R20R?), enel que se han ubicado diversos
obstaculos [11, 12, 13]. ]. El robot inicia su trayectoria desde un punto de este espacio
y debe alcanzar un punto final, evitando los diversos obstaculos que se encuentran
dentro del entorno; tal como se ilustra en la Figura 1.
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Figura 1.1: Ejemplo de escenario de vuelo con obstaculos.

La planificacion de trayectoria determina una sucesién de configuraciones especi-
ficas que permiten trasladar al robot desde un estado inicial hasta un estado final.
Se describe como estado a la descripcion de la posicion y orientacion del robot, en
referencia a un marco absoluto expresado por la combinacién de las coordenadas
cartesianas [14, 15, 16] del centro de gravedad del robot y la orientacion angular

desde su eje principal.

Este campo de estudio especifico se encuentra enmarcado por la robética mévil [17,
18, 19], y se resuelve con el apoyo de la automatizacion de sistemas [20, 21, 22]. Para
ello, se requiere de un procesamiento amplio de volimenes de informacién, pro-
veniente de sensores y actuadores. En consecuencia, la capacidad computacional es
un requerimiento relevante, pues se engloba dentro de la categoria de problemas de

programacion de naturaleza NP-completo [23, 24, 25].

En este contexto, resulta necesario estudiar y proponer nuevos algoritmos que dis-
minuyan el esfuerzo computacional para la planificacién de trayectoria, que trans-
formen 6rdenes de alto nivel en comandos de movimiento de bajo nivel, ejecutables

por el robot.

20



1.3 Planificacion de trayectoria discreta y continua

El tratamiento del entorno de trabajo puede ser abordado a través de 2 metodolo-
gias fundamentales, que implican el tratamiento del espacio euclidiano como infor-
macion continua o discreta [26, 27]. Independiente de la metodologia de trabajo, el
objetivo es determinar de 2 conjuntos de informacién dentro del entorno de trabajo,

siendo:

1. El conjunto de los espacios por los que el robot mévil no puede moverse (es decir,

los espacios ocupados por diversos obstaculos)

2. El conjunto de espacios libres de colisién (es decir, los espacios por donde el robot

puede moverse).

Para la determinacién de estos conjuntos, una alternativa de estudio viable se enfoca

en el analisis geométrico del entorno de trabajo [28, 29, 30]

La Planificacién de trayectoria discreta [31, 32, 33] construye mallas con una forma
definida dentro del entorno de trabajo, mientras que la planificacién de trayecto-
ria continua [34, 35, 36], recurre a los nimeros pseudo aleatorios para determinar
la existencia de obstaculos o espacios libres. Entonces, a partir de la definicién del

conjunto de espacios libres, se construyen trayectorias navegables por el robot.

El conjunto continuo de puntos libres de colisién, unidos a través de lineas rectas,
constituye las trayectorias que el robot puede seguir para alcanzar su objetivo. Ahora
bien, en muchos casos esta posible trayectoria implica giros bruscos a lo largo del
entorno de trabajo. Por lo que, es importante destacar que solamente un robot de

caracteristicas holonémicas es capaz de completar esta clase de trayectorias.

1.4 Planificacion de trayectorias suaves

El objetivo de la Planificacion de trayectorias suaves [37, 38, 39] es la construccion
de curvas continuas, es decir, lineas en las que la sucesién de puntos cambia de di-
recciéon de forma que el vector tangente tuerce su direccién sin formar aristas. En
geometria diferencial, el vector tangente es el vector velocidad de la curva, que indi-

ca su direcciéon de movimiento. En especifico, los robots que poseen caracteristicas
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no-holondémicas [40, 41, 42], requieren esta clase de curvas suaves, pues carecen de
las habilidades necesarias para realizar maniobras bruscas, ya sea en tierra o en el

aire.

Es importante resaltar que este libro desarrolla diferentes propuestas para la crea-
cién y construccién de curvas suaves, que sirven como aproximaciones a trayecto-
rias suaves, navegables por UAV de caracteristicas no-holonémicas, especificamen-

te, aviones de ala fija.

El libro se organiza en 4 capitulos, donde el Capitulo 1, realiza una breve introduc-
cion de la tematica de planificacién de trayectoria. El Capitulo 2 describe una pri-
mera aproximacion de curva suaves a través de Bézier hacia las curvas clotoides.
El Capitulo 3, propone una construccion de trayectorias suaves, tomando en cuenta
las caracteristicas restrictivas de maniobrabilidad de los UAV. Finalmente, en el Ca-
pitulo 4, se recurre al concepto del problema de optimizacién multiobjetivo para la

construccion de curvas suaves y su aproximacion hacia las trayectorias suaves.
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02

Trayectorias de vuelo suaves 3D,
y su aproximacion Bézier hacia
las curvas Clotoides 3D

RESUMEN

Este capitulo realiza el estudio de matematico y metodolégico de las curvas en el
espacio euclidiano o 3D. Ademas desarrolla un breve estudio de las curvas Bézier y
las curvas clotoides. En especial, se enfoca en la definicién de las curvas clotoides,
sus caracteristicas y alcances. El objetivo es desribir brevemente la construcciéon de

trayectorias suaves, a partir de las curvas suaves.



2.1 Introduccion

El area de los vehiculos aéreos no tripulados (UAV) ha evolucionado de forma im-
portante en los Gltimos afios. Los UAV fueron inicialmente concebidos para fines
militares, pero hoy en dia existe un gran ntimero de aplicaciones comerciales [43,
44].

No obstante, una de las principales desventajas de los UAV es que sus sistemas de
control sonno lineales y algunos de ellos también tienen restricciones no-holonémicas

para la navegacion en condiciones normales.

Para controlar estos vehiculos, a menudo se utiliza curvas espaciales para generar
trayectorias suaves. Ahora bien, la mayoria de estas curvas no son intuitivas, ya que,
no tienen en cuenta las restricciones del vehiculo y/o requieren procedimientos de
optimizacién, que pueden no ser viables para aplicaciones en tiempo real. En este
sentido, una amplia variedad de tipos de curvas, como las de Bézier o spline poliné-
micas han sido utilizadas con el objetivo de alcanzar una posicién determinada en
el espacio euclidiano 2D o 3D. [45, 46, 47]

El anédlisis geométrico, en el contexto de las curvas, se representa por medio de un
mapa continuo en el espacio dimensional (desde la dimensién 1 hasta la dimensién
n), cuyo dominio tiene derivadas continuas, hasta un orden especifico, concepto que

se utiliza a menudo en la navegacion robética continua.

En especifico, las curvas clotoides o espirales de Euler presentan algunos aspectos
geométricos de aspecto y de seguridad interesantes, que han sido utilizados en di-
versas aplicaciones reales, como en el disefio de carreteras, ferrocarriles y montafias

rusas [48, 49], ademas, del control de vehiculos no-holonémicos [50, 51, 52].

La solucién a las curvas clotoides se determina, a través del calculo de las integra-
les de Fresnel, si bien no existe una solucién cerrada para esta curva. Sin embargo,
algunas aproximaciones, con errores de hasta 10~?°, permiten el calculo en tiempo
real [53, 54, 55, 56, 57].Ahora bien, a pesar que no existe una solucién analitica, es
posible calcular de forma analitica algunas de sus propiedades geométricas, como la

curvatura y el angulo tangente en funcién de la longitud de arco.
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Este capitulo se centra en la generacion de trayectorias suaves 3D para pilotar UAV
no-holonémicos (aviones de ala fija). En este contexto, debido a las interesantes ca-

racteristicas de las clotoides, sus propiedades y su suavidad, el objetivo es aproximar
las clotoides 3D mediante curvas racionales Bézier para conseguir un rendimiento
en tiempo real. El esquema de control se divide en dos etapas: planificador local y

control cinematico, como se describe en la Figura 2.

PR RS S RS WSS S e U= T S R W S R S M S S W e e e

I Planificador Local I Control Cinematico

|
I

1 : I :
I | Generacién de | Control . 5
I| trayectoria : I PID UAV :
I L 3 3
[ | : i
1| Configuracién | ' (6,¥,vel) !
1 objetivo : I |
| I i I

Figura 2.1: Diagrama de planificacién y control.

El capitulo esta organizado de la siguiente forma. La seccién 2.2 introduce algunos
preliminares sobre las curvas suaves, las clotoides y las curvas de Bézier; en la sec-
cion 2.3 se explica la metodologia propuesta para aproximar las clotoides 3 Dmediante
curvas de racionales Bézier; a continuacioén, en la seccion 2.4, se realiza algunas prue-
bas de simulacién de vuelo, cuyos resultados se muestran y discuten; finalmente en

la seccion 2.5 se extrae algunas conclusiones.

2.2 Definicidn de curvas suaves

Dentro del campo de la geometria, una curva se describe como una linea continua
y suave que sigue una trayectoria definida por reglas matemaéticas o por propieda-
des geométricas. Estas curvas, representadas mediante ecuaciones o construcciones

geomeétricas, pueden ser planas 2D (como una parabola) o espaciales 3D (como una
hélice).
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2.2.1 Curvasen el espacio

Construir una curva en el espacio consiste en definir una funcién vectorial continua
y diferenciable que describa un camino en el espacio tridimensional 3D. Esta curva
se define mediante una parametrizacion, usualmente con respecto al tiempo o a otro
parametro escalar, y permite representar trayectorias que un objeto o sistema pue-
de seguir en un entorno 3D. En este sentido, es importante destacar dos conceptos

primordiales que se desprenden del concepto de curva en el espacio:

= 1) Curvatura: La curvatura mide cudnto se desvia una curva de ser una linea
recta en un punto dado. Se trata de una cantidad que indica como cambia la di-
reccion de la tangente a la curva conforme avanzamos sobre ella, de modo que,
si la curvatura es grande, la curva estd cambiando de direccion bruscamente,

es decir, estd “méas doblada”.

= 2) Torsion: La torsién mide cudnto se “retuerce” o “sale del plano” una curva
en el espacio.. Es decir, indica la variaciéon de la direccion del plano osculador
de la curva, mostrando si la curva se mantiene plana o se extiende tridimen-
sionalmente. Asi, una torsion distinta de cero indica que la curva gira fuera de

un solo plano, haciendo que la curva sea verdaderamente espacial.

En relacion directa con las férmulas de Frenet- Serret, que describen el movimiento
de un objeto o punto a lo largo de una curva en el espacio tridimensional, el lector
puede comprender este concepto imaginando que camina por un sendero curvo en
3D: no solo avanza, sino que también puede girar o inclinarse, como se ilustra en la

Figura 3.

De manera formal, cualquier curva espacial C(s), parametrizada por su longitud de
arco s en un espacio tridimensional R?, estd determinada por su curvatura «(s) y su
torsién 7(s) # 0, de acuerdo con el teorema fundamental de las curvas espaciales
[68]. Intuitivamente, una curva puede obtenerse a partir de una recta mediante su

flexién (curvatura) y retorcimiento (torsion). Asi, para |«(s)| > 0y torsién 7(s), existe
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Sistema TNB sobre una hélice = -Curva (hélice)
- Tangente (T)
2. ~=#Normal (N)
= Binormal (B)

Figura 2.2: Diagrama de planificacién y control.

una Unica curva espacial definida por las ecuaciones de Frenet-Serret, tal que:

T'(s) 0 k(s) 0 T(s)
N'(s)| = |—=k(s) 0 7(s)| |N(s) (2.1)
B'(s) 0 —7(s) O B(s)

siendo, T(s), N(s) y B(s) los vectores tangente, normal y binormal que conforman
un sistema ortogonal unitario de mano derecha, respectivamente. Mientras, T'(s) =
dT(s)/ds, N'(s) = dN(s)/ds y B'(s) = dB(s)/ds son las primeras derivadas de tales

vectores.

Este sistema ortogonal se representa como R(s):=[T(s) N(s) B(s)] y puede integrar-
se a partir de la ecuacién (2.1) a partir del par especifico de funciones x(s) y 7(s),
dado un valor inicial de R(0):=[T(0) N(0) B(0)]. Una vez determinado el campo de
vectores tangentes, la posicion de la curva puede obtenerse integrando dicho vector,

como se indica en la ecuacion :

C(s) := C(0) + /O T(e) de (2.2)
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Por otro lado, partiendo de una curva C(s), se puede obtener los vectores tangente
T(s), normal N(s) y binormal B(s). Entonces, teniendo en consideracién la teoria de
la geometria diferencial de las curvas [58], se define las siguientes igualdades para
el triedro mévil de cualquier curva C(s):

T = e 23)
T(s)  [C(s) x C'(s)] x C(s)

NE = ] = TI0G) < €(s)] < C(s)] @4)

B(s) o= T(5) < N(s) = 1o 25

donde, C'(s)=dC(s)/ds, C"(s)=d*C(s)/ds* y
C”(s)=d*>C(s)/ds*, representan las derivadas del vector de posicion C(s).

2.2.2 Clotoides panares 2D

Una espiral de Euler o clotoide plana se define en R? como la curva cuya curvatura

varia linealmente con respecto a la longitud de arco, tal que:
K(S) = Ko + 048, (2.6)

donde, kg es la curvatura inicial y o, := dk(s)/ds es la brusquedad de la clotoide,
que esté relacionada con su factor de homotecia o escala K, debido a o, := 7/K?,

mientras el &ngulo tangente de la clotoide esta dado por:

B(s,p) := Kos + %32, (2.7)

donde, p = {ko, 0, } es el vector de parametros (para compactar la notacién). Ademas

de esto, el vector tangente, se puede expresar como:

o [eostats )
TP Linw(s,p))] 28)

A partir de las ecuaciones (2.2), (2.7) y (2.8), definidas para una clotoide planar (con-
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tenida en el plano XY') [59], denotadas como C(s, p), pueden derivarse de las inte-

grales de Fresnel:

C(s,p) = (2.9)

| Jo cos(rof + % &%) dé
| [y sin(kof + 2€2) de

siendo, C(s,p) y S(s, p) las integrales de Fresnel en coseno y seno. Es importante
resaltar que, sin pérdida de generalidad, se asume que la clotoide esta centrada en

el origen, es decir, C(0) = 0, para la ecuacion (2.2).

Los autores de [60] introdujeron la espiral de Euler 3D o clotoide (C3D), definida
en R3, como una curva cuya curvatura varia como en la ecuacion (2.6), mientras su
torsion varia, tal que:

7(s) :==Tp+ 0,5 (2.10)

donde, 7y es la torsioén inicial, y o, := d7/ds es la primera derivada geométrica o
brusquedad de torsion.

El principal inconveniente de las clotoides 3D tal y como se presentan en [60], es
que requiere una integracién numérica para ser resuelta. En consecuencia, si se bus-
ca construir un planificador, a través de una curva 3D que alcance una posiciéon u
orientaciéon determinada, los parametros de la clotoide 3D deben optimizarse para
que la clotoide satisfaga tales restricciones, lo que consume tiempo y no es adecuado

para operaciones en tiempo real.

2.2.3 Curvas Bézier

Con el objetivo de facilitar la comprensién del concepto de curvas Bézier, este tipo
de curvas se puede explicar como un conjunto de lineas suaves definidas por puntos
de control que atraen la curva hacia ellos, creando formas curvas predecibles. La
Figura 4 presenta un ejemplo. En ella, se puede apreciar que la curva (linea negra
discontinua) inicia y finaliza en puntos especificos (puntos rojos), sin embargo, no
incide en ninguno de los puntos intermedios (puntos verdes). Esto significa que la

curva realiza una aproximacion hacia los puntos de control.

Las curvas de Bézier constituyen un método matematico para representar curvas de
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Figura 2.3: Forma clésica de la Curva de Bézier.

forma numéricamente estable [61, 62]. En este sentido, una curva de Bézier caracte-
rizado por tener un solo componente polinémico. Los polinomios de Bernstein de
grado n (conn > 0) también pueden interpretarse como funciones basicas B-splines

de grado n definidas sobre el dominio de dichos polinomios.

La curva de Bézier de grado n puede expresarse de la siguiente manera:

men=$ (1) (%) ()

n—1
2.11
ZPo(l—t)nJr(T) bt Pt @10
te0,1]
donde, P := [P}, P{,... ,P’] € R¥"*V son el conjunto de puntos de control P;, s;

es la longitud de la curva y R? es el espacio 3D en el que se define la curva. En
otras palabras, el grado n de la curva de Bézier signifca una interpolacién entre los
n + 1 puntos de control 3D. Por lo tanto, las curvas de Bézier pueden expresarse en

términos de polinomios de Bernstein de grado n, tal que:

Bs(s,P) = Z bin(s)Pi, s € [0, 54 (2.12)
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siendo, los polinomios b; ,(s) € R

bin(s) = (?) (SfS; 3>n_i <§> i=0,....n (2.13)

LLa principal ventaja de las curvas de Bézier con respecto a las clotoides es que tienen

propiedades de escalado y rotacién [63].Por lo tanto, se puede ajustar los P;de una
Bézier unitaria y luego utilizarlos para generar una gran variedad de curvas debido

a las propiedades mencionadas.

2.3 Control de seguimiento y Actitud

Una problemética de estudio importante, dentro de la tecnologia UAV, tiene que
ver con el control de seguimiento y actitud de vuelo [64].Esto es especialmente re-
levante en los aviones (vehiculos voladores de ala fija), porque poseen restricciones
no-holondémicas y, por tanto, el control de trayectoria y actitud es la opcién natural

para pilotar un UAV.

2.3.1 Generacion de trayectorias suaves

Los autores de [60] desarrollaron una curva suave para unir dos configuraciones
punto-vector en el espacio 3D.El punto de partida son las ecuaciones de Frenet-
Serret, como se describe en (2.1), y el objetivo es calcular una curva en el espacio
como en la ecuacién (2.2). De esta forma, se ha construido una curva que une dos
configuraciones arbitrarias de puntos-vectores, por medio del algoritmo de optimi-
zacion del descenso del gradiente [65]. El procedimiento obtiene los valores 6ptimos
de la curvatura r¢ y torsién 7, iniciales, asi como la brusquedad de curvatura o, y
la brusquedad de torsién o,. Por tanto, su soluciéon podria tomar cualquier valor
inicial y final de x y 7. Sin embargo, cuando se planifican curvas para vehiculos no-
holonémicos, como los robots aéreos o subacuaticos que se mueven en un espacio
3D, debido a sus restricciones no-holonémicas, dichos vehiculos no pueden seguir
curvas arbitrarias con cambios instantaneos de k, 7 de orientacion. En consecuencia,

en muchos casos précticos, los valores de la x y 7 iniciales son establecidos, basan-
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dose enla x y la 7 actuales del robot. En ese caso, utilizando la solucién propuesta en
[60] ] solo se puede conseguir la posicién final o la orientacion final, pero no ambas

simultdaneamente.

En este capitulo se intenta construir una curva, parametrizada a través de un vector
de pardametros genérico p, denominado C(s, p). En realidad, el vector de parame-
tros, se divide en dos subconjuntos de parametros p := [po p|, donde, py = (Ko, 70)
es una lista de pardmetros que definen las condiciones iniciales; y p = (0, 0,) es el
pardmetro de disefio. El objetivo es calcular p* tal que T(s,p) = T* paraun s > 0
dado. Sin pérdida de generalidad se asume que el marco local de la curva es coin-
cidente con el marco de coordenadas global, lo que significa que el punto inicial es
C(0,p) = [0,0,0]".

Utilizando las propiedades de las clotoides [66], se ha proporcionado una solucién
inicial para el procedimiento de optimizacién. Entonces, el punto de partida es el
calculo individual de la brusquedad requerida por dos clotoides, en los planos XY
y Y Z. De esta forma, se obtiene o, y o,, por separado, para un dngulo de cabeceo

f(s) y un angulo de guifada v (s), siendo:

b - |i(/32)‘ - % (2.14)
Ty = (0(5)) (215)
o = (U(s) (2.16)

Por lo tanto, el problema a resolver se puede plantear como un problema de mini-

mizacion de la orientacién con la conjetura inicial p = (o, 0,):

p* = arg, min [T — T(s, p)| (2.17)
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2.3.2 Aproximacion a la Clothoide 3D

A continuacion, se realiza la descripcién del método propuesto para aproximar las
clotoides 3D utilizando curvas racionales de Bézier (RB), con un nimero determina-
do de puntos. El método realiza una ampliacién de la formulacién proporcionada en
[63],considerando pesos independientes en cada P; de una curva RB. De esta forma,

las curvas RB se pueden expresar como:

Bros(s, P, W) = | 3 1 obin(5)W| TS (5 WP, (2.18)

donde, W; € R? es una matriz diagonal de pesos.

Los parametros a aprender son la posicion de los pesos P; y los W;. Dado que pre-
sentan una relacion no lineal, se busca aprender estos parametros por medio de un
método de dos pasos. Primero se busca aprender la posicién de los P;, asumiendo
W, = I, lo que corresponde a la expresiéon de una curva de Bézier convencional.
Después, aprender los pesos de la curva RB, considerando que los P; aprende los
pesos de la curva RB, considerando que los Pi son fijos, con el objetivo de refinar la
estimacion, incluyendo una mayor flexibilidad para ajustarse a la curva clotoide 3D
original. Entonces, para estimar la curva de Bézier convencional, se fija la posicién
del primer y dltimo P; a los valores inicial y final de la curva, es decir, Py = C(0,p) y
P, = C(sy,p), donde, s es la longitud total de la curva. Dado que se asume W, =1,
entonces, los puntos de la curva se pueden obtener mediante un ajuste por minimos
cuadrados (LS) Y = XP, tal que:

C(O,p) bo,n (0) P, bn,n (0) P,

X b0 0 T bin(0)
bo,n (1) bn,n (1)
Clss,P) = s mPo = 575, mEn
b1,n(0) bn—1,n(0)
Z;ﬂ biyn(O) e Z;ﬂ bi,n(o)
x_ | : (2.20)
bl_,n(O) bnfl,n(o)
Yibin) T T bin(1)
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P=| : (2.21)

Con la posicion estimada de los P;, es posible estimar los valores de los pesos para
cada coordenada. Primero se expresa la igualdad C(s, p) = Brg(s, P, W) en términos
de los pesos, siendo:

n n

D bin(s)Cls, PYWi = > bin(s)PiW, (2.22)

1=0 1=0

considerando que W, = I y W,, = I, entonces, con el objetivo de asegurar que la
curva estimada comience y termine en la posicion inicial y final de la curva original,

se obtiene la ecuacién lineal ¥ = XW, que se puede resolver mediante LS:
D01 (0)P5(0) + by, (0)P,,(0)
Y= : (2.23)
bO,n(Sf)PO(Sf) + bn,n(sf)Pn(3f>

~b1,(0)P1(0) ... b1 (0)P,_1(0)
% ; ; (2.22)
~bia(s)Pi(ss) - bura(sp)Pui(sy)
W Wi ng]T (2.25)
donde, P;(s) := (C(s,p) — P;) y abusando de la notacion W es efectivamente una

version vectorizada de la misma, al resolver el problema LS.

2.4 Experimentosy Resultados

La experimentacion se ha llevado a cabo a través de las herramientas de simula-
cion de vuelo FlightGear 2018 y el entorno de desarrollo integrado Matlab R2017b.

El modelo de avién utilizado para las simulaciones dindmicas se basa en el UAV
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Kadett 2400 [67], como se representa en la Figura 5. El sistema tiene 4 entradas
(véase la Figura 6) para controlar las superficies aerodinamicas y la velocidad. Sien-
do, d. (elevador), d, (alerén), 4, (timoén) y o, (acelerador). Como cualquier vehiculo
que se mueve en un espacio cartesiano 3D, puede representarse mediante 6 esta-
dos {z,y, z,¢,0,1}, donde los tres primeros estados definen el vector de posicién
del centro de gravedad C¢ ccon respecto a un sistema de coordenadas global C'S,
situado en el origen y los tres tltimos son los angulos de Euler de balanceo, cabeceo
y guifiada, respectivamente, que definen la orientacion del sistema de coordenadas
local del cuerpo C'S;, con respecto a C'S,.

Debe observarse que C'S;, esta definido por 3 vectores ortogonales unitarios { X;, Y3, Z },
alineados con los tres ejes del vehiculo y centrados en Cg, con Z, apuntando hacia
abajo, como puede verse en la Figura 5. Las velocidades angulares a lo largo de los

ejes X, ,Y;, y Zy se representan por p, q y r, respectivamente, como se detalla en [67].

Figura 2.4: Definicién del modelo UAV Kadett y sus varia-bles.

La Figura 6 muestra la estructura de control utilizada para la aeronave. Dadas unas
condiciones iniciales (vector tangente actual T) y una configuracién objetivo (vector
tangente final T*),[]), se genera una trayectoria de referencia. El objetivo es mantener
una velocidad constante vel a lo largo de la trayectoria, lo que se consigue mediante
un controlador PID que afecta al acelerador. Ademas, los perfiles 6 y ¢ de la trayecto-
ria generada se utilizan como entrada de referencia para otros dos controladores PID.
El primer PID controla el elevador, que afecta a la orientacién del cabeceo. Mientras
que, la salida del segundo PID se multiplica por una ganancia K K para controlar
el alerén, que afecta a la orientacién del alabeo, pero también hace que el avién gire
y, por tanto, afecta a la orientacion de la guifiada. La accién de control también se

aplica al timén, lo que afecta ligeramente a la orientacién de la guifiada y se utiliza
para compensar pequeios errores al seguir la guifiada de reterencia ).
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Como se explica en la seccién 2.3.2, una clotoide 3D (C3D) puede ser aproximada
por una curva RB. El principal inconveniente de utilizar C3D es que estas curvas se
calculan utilizando las integrales de Fresnel, lo que, para un paso de discretizaciéon
pequefo y distancias largas (limite superior de integracién), significa un alto con-
sumo de tiempo computacional. Ademas, otro problema es que el resultado final
depende de la seleccion del paso de discretizacion. Asi, para idénticos valores de o,
y 0, la trayectoria generada y la orientacion final seran diferentes dependiendo de
dicho paso de integracion.

Reference
Trajectory
6
6 PID ° 5| Elevator
Pitch Y
5, | .. i
K > Aileron =
_w>€?_y PID S | Rudder iE =
Yaw ” 'L E
_)Cvel | PID 6”‘: Throttle 1;/"
T Earth-speed

Figura 2.5: Esquema utilizado para el control del modelo de UAV Kadett.

Por el contrario, una RB que esta parametrizada por n Puntos de control y pesos pue-
de, , en consecuencia, ser discretizada utilizando cualquier paso, produciendo siem-
pre la misma curva. Otro inconveniente de utilizar directamente las curvas C3D es
que, para resolver el problema de planificacién, se utiliza algoritmos de optimiza-
cion, con el objetivo de encontrar los valores o}, y 079" y, a partir de ello, alcanzar un
determinado vector tangente final T*,para un determinado paso de integracion. Este
proceso consume mucho tiempo y no es apropiado para la planificacion y el control
en tiempo real de los UAV.

Para las simulaciones realizadas en esta seccion, se ha aproximado una C'3D, a través
de una RB de orden n = 13. Tras un estudio en el que se utiliz6 diferentes 6érdenes
(n = {5,7,9,11,13,15,17}), que no se muestra en favor de la brevedad, se encontré
que n = 13 fue la mejor opcién teniendo en cuenta la precision y el tiempo de célculo.

Para este caso particular, se ha generado una C'3D utilizando 10* puntos discretos. La
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brusquedad de la curvatura se fija en o, = 5,54 - 10~[ rad/m?], la brusquedad de la
torsién es o, = 6,12-10°[ rad/m?], la longitud total es / = 180 m, con angulos finales
§ = —m/8rady ¢y = /4 rad. El tiempo medio de célculo para este caso particular
es t. = 15,97[ms|, mientras que el error de aproximacién integrado a lo largo de la

trayectoria es e = 5,84 - 10~%[m].

Para este analisis se ha utilizado un ordenador con procesador Intel Core i7—6700H ()
2,60GHz y memoria DD R4 de 16GiB. La Figura 7 muestra la C3D (azul) y la RB

aproximada (rojo discontinuo), asi como los P; (circulos verdes).

150

E87
% i’z; "'*_;.‘.__‘_
¥ S
y(s) [m]

Figura 2.6: Aproximacién de C'3D con RBC: orientacién final: 0* = —7n /8 y ¢* = 7 /4.

Para los experimentos se ha establecido que, la velocidad de referencia es contante
en vel = 18[m/s], con un periodo de muestreo de 7; = 20[ms| para controlar la
aeronave. Dado que la longitud de la trayectoria de referencia se ha fijado en [ =

180[m], entonces, el tiempo de simulacién es de ¢ = 10[s].

Con el objetivo de realizar una descripcién gréfica del seguimiento de la trayectoria
por parte del UAV, en la Figura 8 se puede apreciar que el UAV (rojo) sigue muy de
cerca la trayectoria de la referencia (azul), ), incluso cuando el UAV solo realiza el

seguimiento de las referencias de cabeceo y guifiada.

Por otro lado, la Figura 9 muestra los errores de seguimiento para algunas variables.
Se puede observar que el error de seguimiento de los dangulos de cabeceo y guifiada
es lento. Esto se debe, principalmente, a que el RB es una aproximacién de una C3D,
que posee la propiedad de suavidad que permite un seguimiento facil. En cuanto ala
velocidad, el error es muy bajo a lo largo de casi toda la trayectoria. Sin embargo, en

la tltima parte (alrededor de [ = 180[m]),debido a que el angulo de cabeceo es alto,
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Figura 2.7: Trayectoria trazada por el UAV (rojo discontinuo) siguiendo una C'3D
aproximada por un RB (azul) con una longitud [ = 180 m y orientacién final
0* = —m/8rady ¢* = n/4 rad.

el UAV tiene algunas dificultades para seguir la velocidad de referencia y el error
e, aumenta. Como consecuencia, la distancia e, entre el vehiculo y la trayectoria

también aumenta considerablemente en la segunda mitad del experimento.
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Figura 2.8: Error de seguimiento de los angulos de guifiada y cabeceo, velocidad y
distancia de posicion a la trayectoria de referencia.

Finalmete, la Figura 10 presenta una secuencia de capturas de pantalla de la simu-
lacién en diferentes instantes de tiempo ¢ = {0,2,4,6,8,10}[s]. Se puede observar

que el UAV comienza en ¢t = 0[s] con altura » = 0, alabeo ¢ = 0, cabeceo § = 0y
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(cQt=4s (dyt=6s

Figura 2.9: Capturas de pantalla de la simulacién en FlightGear.

guifiada ¢ = 0.A continuacién, comienza el giro en alabeo, lo que hace que el avién
gire hacia la izquierda, mientras aumenta progresivamente su dngulo de cabeceo y,
en consecuencia su altura (f = {2 — 8}s). La dltima imagen muestra el UAV en la

altima configuracion ¢ = 10s, con cabeceo §# = —7/8 rad y guifiada ¢ = 7/4 rad.
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2.5 Conclusiones

Se ha presentado un planificador de trayectorias suaves para aviones de ala fija. El es-
quema de control se divide en dos etapas: planificador local y control cinematico. En
la etapa de planificacién, las clotoides 3D se aproximan mediante curvas racionales
de Bézier para generar trayectorias suaves en el espacio euclidiano 3D.A continua-
cion, con el objetivo de seguir las referencias de velocidad y orientacion, se utiliza la

trayectoria como referencia para pilotar el UAV de forma auténoma.

El uso de RBC de orden 13 para aproximar clotoides 3D ha demostrado ser eficiente
computacionalmente (alrededor de 16 ms para calcular 10* puntos discretos) y con
alta precision (error de aproximacion de alrededor de e = 6 - 107%s a lo largo de una

trayectoria con longitud 180s.

Se ha realizado pruebas de simulacién de vuelo utilizando el simulador FlightGear
y MATLAB. Tras analizar los resultados, se observa algunas ventajas interesantes en
el uso de clotoides 3D para la planificacién de trayectorias. Un vehiculo no- holoné-
mico que sigue estas trayectorias suaves es capaz de seguir facilmente la referencia
de los angulos de cabeceo y guifiada. En este sentido, aunque no se tenga en cuenta la
referencia de posicion, los resultados han demostrado que un UAV no-holonémico
es capaz de trazar una trayectoria cercana a la disefiada por el planificador de tra-

yectorias.
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03

Planificacion de trayectorias 3D
limitadas por restricciones de
maniobrabilidad en UAVs

RESUMEN

Este capitulo presenta una propuesta para la generacién de trayectoias suaves tridi-
miensionales 3D, navegables por vehiculos aéreos no tripulados de caracteristicas
no- holonémicas (es decir, aviones de ala fija), a partir de la construccién de curvas
continuas. El estudio realiza una breve inclusién de maniobrabilidad real de UAV de
ala fija, donde el comportamiento dinamico y cinematico introduce restricciones en
entornos reales. Finalmente, se incluye resultados de simulaciéon de vuelo para clari-
ficar la teoria presentada.



3.1 Introduccion

Un reto fundamental para los algoritmos de planificacién de vuelo consiste en incor-
porar estrategias activas de evitaciéon de obstaculos, que garanticen una navegacion
continua, fluida y segura. Este reto implica la consideracion de diversos aspectos,
como las aceleraciones tangenciales, las derivadas parciales en sus componentes di-
mensionales, la odometria y el ruido [68, 69]. Actualmente, este campo de trabajo

evidencia una actividad de investigacion activa y relevante.

La literatura sobre planificadores de trayectoria y evasion de obstaculos, que ademas
garanticen un segumiento fluido y seguro, ya sea en entornos continuos o discretos,
es amplia. Por este motivo, para el desarrollo de este capitulo se ha seleccionado dos
de los enfoques maés relevantes de la literatura para su comparacién. Por un lado, se
analiza la metodologia rapidly-exploring random tree (RRT), que realiza el mapeo
en el espacio continuo [70, 71, 72] Por otro lado, se considera la metodologia modified
adaptive cell decomposition (MACD) [73] basado en técnicas de discretizacion del
espacio [74, 75].

El enfoque general de las principales metodologias mencionadas consiste en des-
cribir la trayectoria 6ptima como un conjunto de puntos discretos. Ahora bien, este
conjunto de puntos multidimensionales no resulta adecuado para un vehiculo aéreo
no tripulado (UAV) con caracteristicas no-holonémicas (es decir, UAV de ala fija)
[76].Es importante destacar que los UAV con esta estructura particular realizan un
vuelo continuo a una velocidad definida. Por lo tanto, sus movimientos estan limi-
tados por su capacidad de maniobrabilidad. En este sentido, cualquier trayectoria
de vuelo calculada debe satisfacer las restricciones propias del modelo cinematico
del UAV. Un enfoque interesante de estudio aborda la btisqueda de trayectorias que
no solo rodeen el obstaculo por sus lados, sino que también lo evadan por arriba
o por debajo. Con el objetivo para explotar todas las capacidades de maniobrabili-
dad de los UAYV, este capitulo presenta un enfoque general de trabajo en el espacio
euclidiano 3D.

En resumen, el capitulo introduce un método para la creacién de trayectorias suaves
3D, a partir de la construcciéon de curvas compuestas por segmentos de lineas rectas

y segmentos curvos. Para la construccion de estas curvas se ha considerado las ca-
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racteristicas cinematicas del UAV de ala fija [77]. Finalmente, se presenta una breve

transicién completa entre la curva y la trayectoria navegable por un UAV.

Figura 3.1: Descripcién del problema de planificacién de trayectoria suave 3D para
un UAV de ala fija.

El capitulo se organiza de la siguiente forma: en la seccién 3.2, se define el mode-
lo UAV, ademas del enfoque de curvatura; en la seccién 3.3 se presenta un nuevo
enfoque para la construccion de trayectorias suaves; en la seccién 3.4, se analiza los
resultados y datos estadisticos obtenidos, a través de simulacionesde vuelo; por al-

timo, se sefiala las principales conclusiones en la section 3.5.

3.2 Descripcion del modelo UAV

Antes de realizar una definicién matemaética formal de un UAV, es importante en-
tender de forma sencilla su concepto. Més all4 del significado de sus siglas, que ya
fueron definidas en el capitulo introductorio, es importante destacar que un UAV es
una aeronave que puede volar sin piloto, tripulacién ni pasajeros a bordo. Se contro-
la de forma remota o funciona de forma auténoma, a través de una computadora a
bordo, que le proporciona diferentes habilidades, entre las que se destaca la posibi-
lidad de seguimiento de rutas programadas o respondiendo a sensores. Finalmente,
un UAV integra a un operador humano que controla el UAV desde una estacion de
control terrestre.
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3.2.1 Sistema no-holondmico UAV

Aunque los conceptos de sistemas holonémicos y no-holonémicos parezcan compli-
cados, en realidad no lo son. En referencia directa a los vehiculos moviles, un sistema
holonémico se define como la capacidad de un vehiculo de realizar giros bruscos,
como un vehiculo terrestre omnidireccional (ODV) que puede girar sobre si mismo,
como lo haria un helicéptero al realizar maniobras similares en el aire. En cambio,
el vehiculo no-holonémico presenta una restriccion de movimiento, pues no pue-
de moverse en cualquier direccién sin realizar un desplazamiento, asi como sucede
con un automévil que, para girar a un lado, necesita estar en desplazamiento. Otro
ejemplo es el avion de alas, que requiere estar en vuelo para poder realizar un giro

en cualquier direccion.

Entonces,se puede asumir a ‘B como un UAV no-holonémico con masa 9t e inercia
J, que se desplaza en el espacio euclidiano R?, y cuyo espacio de estados debido al

desplazamiento se define de la siguiente manera:

qr(t) =(Xr(t), Yr(t), Zr(t),

(3.1)
FR(t)7 GR(t>7 VR(t)a WR(t>)T € R7

donde, Xy(t), Yr(t) y Zr(t) representan el sistema de conversién de Tait-Bryan [78,
79] con origen comun. En este caso, se puede eliminar la dependencia del tiempo y
asumir condiciones ideales de vuelo estacionario para el UAV. Ademas de la fuerza
total Fir(t) = 0, el momento total Gx(t) = 0, la velocidad lineal y la velocidad angular
son constantes Vp(t) = Wg(t) = k. Entonces, se puede definir una configuracion

reducida de la siguiente manera:

Gr = (R, Or, ¥R]" 3.2)

donde, 1)z (t) es el dangulo de guifiada, 6(¢) es el dngulo de cabeceo y ¢(t) es el angulo
de alabeo del UAV.

Si se asume las refracciones en un modelo geométrico de aproximacion a la tierra

plana [80],entonces se puede considerar que el sistema local del UAV permanece
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alineado con un sistema cartesiano objetivo gr = [X7, Y7, Z7|7. En este caso, las
ecuaciones del sistema coinciden con los puntos de cada modelo. Por lo tanto, existe
una conexién en todo momento entre los puntos generados por la posiciéon del UAV

dr y otra configuracion derivada equivalente g;.

Por otra parte, la relacién de las coordenadas cartesianas sobre conjuntos abiertos
U={rbelr<00<0<m0<p<2rtyV ={(z,y,2)]2* + y* + 2 > 0},
muestra una correspondencia univoca F’ : V' — U entre las coordenadas cartesianas
y esféricas, que alcanzan singularidad al extenderse al eje z, con 2?2 +y? = 0, donde,
¢ no esta definido. Ademas, ¢ no es continua en (z,y, z), con z = 0.

Por lo tanto, la funcién inversa F'~'1 entre los mismos conjuntos abiertos se puede

describir los siguientes términos:

x =rsinfcosy
y = rsinfsiny (3.3

z =1rcCosf

donde, la matriz jacobiana se define como:

17| = r2sind (3.4)

3.2.2 Radio de Curvatura

La magnitud que mide el cambio de direccién de la curva del vector tangente (defini-
da como curvatura), frente a un objeto diferenciable incrustado en el espacio euclideo
[81], se define a partir de la ecuacién paramétrica de la circunferencia g : R — R”,
que asume el mismo valor de \ y satisface ¢'(t) = N'(¢), siendo ¢”(t) = \"(t) encadat
fijo. Entonces, el radio no depende de la posicién de A(¢), sino unicamente de la velo-
cidad N (t) y de la aceleracion A\”(t). Por tanto, la ecuaciéon paramétrica A(t) : R — R

define la curvatura p en dependencia de los escalares | X' (¢)|%, [N (t)[* y X - N (t)

Se parte de la ecuacion paramétrica general de la circunferencia g(u) = Acos(h(u))+
Bsin(h(u)) + C, donde, C' € R" es el centro, A, B € R son vectores perpendiculares
de médulo p. Entonces, A-A=B-B=p>?ANA-B=0,h:R — R, es una funcién do-
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blemente diferenciable en ¢. Por lo tanto, el sistema de derivadas se puede describir

de la siguiente manera:
9[> = p*(h')?
g/ . g// — ,02hlh// (35)
g"1? = p*((W)") + (n")?
donde, el sistema derivado en relacién con ) se define como:
IN2(t)] = p*h(t)
F(E) - X' () = P2 (OR'(1) (3.6)
IN2 ()] = p(h™(t) + (1))

Entonces, el sistema resultante en p, h'(t) y h”(t) se define como:

_ Al?
\/l)\/‘2|)\//|2 _ ()\/ j )\//)2

p (3.7)

donde, p es la magnitud geométrica del radio de curvatura.

3.3 Definicidn de curvas

Diversos planificadores de trayectorias [82], devuelven un conjunto de vértices y
nodos en su resultado, que se definen como puntos de control P;. Por lo tanto, la tra-
yectoria 3D es definida a partir de un conjunto P;, establecido en un orden especifico,

y expresarsado como una secuencia de interpolacién discreta.

donde, f(t;) es un conjunto de puntos 3D ei = 1,...,n (siendo, n el nimero total de
puntos) es un conjunto de nodos conocidos a partir de la planificacion de trayectoria.
Por lo tanto, se puede definir un conjunto de k£ sub-intervalos entrei = 1 ei = n
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particionado en [a, b], siendo:

[a, b] = [tl, tg] U [tz, tg] Uu...u [tn_g, tn—l] U [tn_l, tn] (3 9)
a=t <t <. Sty <ty=b '
Por tanto, se puede expresar una curva s(¢) con n polinomios a trozos, tal que:
(
Sl(t), t e [to,tl]
Sg(t), te [tl,tg]
s(t) =

[ sn(t), T € [ty tn]

si(t) = qut™ + e t" T+ @t + got°

i(t) = at” + g ait' + qo (3.10)

i=1,2,...,n

donde, ¢, representa coeficientes constantes, k es el grado del polinomio s;(¢). En-
tonces, s(t) representa la funcién de interpolacién spline [77, 83] de grado k para la

secuencia discreta P; = v; = f(t;).

Por otra parte, dentro de la interpolacién polinémica, un efecto comtin es el conocido
fenémeno de oscilacién de Runge [84]. En este sentido, las funciones de interpolacién
por curvas splines [77] minimizan la rugosidad sometida a restricciones, ademads, de

su extrapolacion en varias dimensiones.

3.3.1 Algoritmo de De Boor

El algoritmo De Boor es un método utilizado para evaluar curvas B-spline que, ade-
mas, son una generalizacion de las curvas de Bézier. En realidad, realizan un prome-

dio ponderado que se ajusta paso a paso, acercdndose al punto correcto en la curva..

El algoritmo de De Boor [85] ofrece una estabilidad numérica para evaluar curvas
spline s(z) en el punto z. De Boor se construye a partir de una suma de funciones

B-spline B, ,(z) multiplicadas por los P;. Las B-splines de orden p + 1, son funciones

48



polinémicas de orden p conectadas a trozos y definidas sobre una malla de nodos
to,...,ti,...,ty,. Por otro lado, es importante resaltar que el algoritmo de De Boor

utiliza O(p*) + O(p) operaciones [86] para evaluar la curva spline en forma B-spline.

s(z) = ZciBi,p(x) (3.11)

Los polinomios B-spline son positivos en un dominio finito y nulos en el resto de

dominios, de ahi que:

i0 ‘= { / o (3.12)

0 de lo contrario

B;y(z) = Bip1(7)+

to, —t
e (3.13)
litpt1 — T
————Binp(2)
Livpr1 — L
El algoritmo no calcula las funciones B-spline B; ,(z) directamente. En su lugar, eva-
lda s(x) a través de una ecuacion iterativa equivalente. Entonces, se define un con-
junto de P; como d;, cond;o parat =k —p,...,k, yparar = 1,...,p que se aplica

en la siguiente ecuacion:

dip =1 — 0, )dim1 -1+ @ipdip1;

i:k—p—l—r,...,k: (314)

QG =

’ tivitp—r — i
Las iteraciones se completan cuando s(z) = dj,, lo que significa que dy,, es el resul-

tado deseado. Esto permite evaluar diferentes grados de splines.

La Figura 12 muestra un ejemplo de ejecucién de curvas spline con diferente orden.
Para este ejemplo P; = 4 (denotados como puntos azules), de modo que la curva se
construye desde p; hasta ps. Entonces, la trayectoria final se ve en la linea roja, mien-
tras que las cajas verdes denotan los obstaculos. Las spline calculan la trayectoria

suave a partir de los P;; sin embargo, en ningtin momento se considera la restriccion
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de radio curvatura, como se describe en la ecuacion (3.7).

ptq

(a) Splines de 2"? orden. (b) Splines de 37 orden.

Figura 3.2: Curva spline construida con 4 puntos de control.

La Figura 12a muestra una spline de 274 orden, donde, p se muestra fuera de sus limi-
tes (cruz magenta). Este problema se puede resolver moviendo los P;, con el objetivo
de mantener una trayectoria libre de colisiones. En [87] el problema se resuelve afia-
diendo P; (es decir, nuevos puntos de control) en zonas criticas entre (p, p2), (p2, ps)

Y (p37p4)-

Por otro lado, la Figura 12b muestra un ejemplo de curva spline de orden 3", don-
de, se satisfacen los limites p. No obstante, la trayectoria cambia y se producen 2

colisiones (cruz magenta).

Con el objetivo de evitar estas posibles colisiones, se propone una solucién que se
enfoca en la modificacién de la curvatura en los puntos criticos, es decir, en los luga-
res cercanos de interseccion de las lineas rectas que unen pares de P;. Este enfoque
considera las limitaciones de movimiento del UAV y propone una variacion de la

curva 3D a partir de semicircunferencias.

3.3.2 Aproximacién de curvatura con semicircunferencias

Si se considera P; = nP, entonces, existe un conjunto de ecuaciones de una recta

nL = nP — 1, y un conjunto de dngulos entre las rectas nf = nL — 1. Por lo tanto,
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cada ecuacioén de recta r L se determina de la siguiente manera:

T Y 1
rLt =1 Pagr  Pay 1 (3.15)
P(ifl)x P(ifl)y 1

mientras, que el conjunto de dngulos 6 se define como:

M) — M(i—-1)

ne __
tan6.’, = ’

L+ mgy - myi-
Py — P

e, = Ly = Fany
Poz — Pi-nz

(3.16)

El objetivo es encontrar una forma para localizar una ecuacién de circunferencia cE,

definida entre cada par de lineas, siendo:
cEMTY = (—a)* 4 (y — b)* —r? (3.17)

manteniendo los P; de la planificacién de la trayectoria y afiadiendo una curva suave

con limites p entre los puntos criticos, como se describe en la Figura 13.

| plaf
Pty f
/ /

N
37 7
- ¥/ pt2 - ‘j/
pto / " i -6;7,

/Z?

by pt{ =" TS
o S~y v
Lt pt3 (b) Aproximacién de circunferencias que in-
(a) Angulo formado entre dos lineas. ~ tersecan 2 lineas.

Figura 3.3: Aproximacion de curva semi-circular con 4 puntos de control.

La metodologia se muestra en la Figura 14, y se detalla, a continuacion.

1) Ubicar 2 puntos relevantes.- Se ubica un punto P4 en direccién L, a distancia

de radio de curvatura p. Después, se ubica otro punto P en direccién r L a la
misma distancia de p.
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2) Lineas perpendiculares.- Se contruye una recta perpendicular R4 L rL; a partir

del punto Py, y después otra recta Rp L rL, a partir de Pg.

3) Lugar de interseccion.- Las rectas R4 y Rp se intersecan en algtn lugar dentro

del plano coor-denado (z, y), punto denotado como e.

4) Determinar el centro de la circunferencia.- Para completar el proceso propuesto,

se han considerado 3 diferentes escenarios para definir el punto central.

a)

El caso ideal es cuando el angulo entre rL; = rLy = 90°, de esta forma
el punto de interseccion entre R4 y Rp determina el nuevo centro de la
circunferencia, como muestra en la Figura 14a. Una nueva interseccion
entre esta ecuacion de circunferencia y las rectas L, y rL, determina la

nueva traza parcial con un p adecuado.

Este caso se muestra en la Figura 14b. Si el angulo 6 formado entre rL, y
r Ly se incrementa, entonces, la distancia d(. g, r,) a la interseccion R4 A

Rp se aleja describiendo una curva exponencial, tal que:

(p1- 2 + p2 -z + p3)
(@3 +q-22+q -2+ g3)

flx) =

(3.18)

Al igual que en el caso b, existe un angulo ¢ formado entre rL; y 7L,
que disminuye. Esta acciéon provoca un alejamiento del centro de la cir-
cunferencia hasta la intersecciéon de R4 y Rp; este cambio de distancia es

exponencial y se ha resuelto con la ecuaciéon (3.18).

Hasta el momento, se ha definido la nueva circunferencia. El siguiente paso es

determinar los puntos de interseccion entre las rectas L, r L, y la circunferen-

cia cE. La recta definida en la ecuacion (3.15) puede expresarse como un vector

—
rLrk, = d + 7, donde, d es el vector de posicion de un punto respecto a una

recta, n es un vector unitario en la direccién de la recta, y A es un parametro

que se desliza por los limites de la recta. Por otra parte, una circunferencia vec-

L—1
torial expresada por la ecuacién (3.17) como (cE™™' — @)2 = 12, donde, ¢ es
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pz.rL2:P2P3 P,=P,+r>rL, Ps
B G
Il 4 S
| 3 .
:U ,' M’L ‘\‘
' o 1

e LI
S pR,=L1L,>P, diernry=0 s
1 3 '
r:U “ !
4 e e
= ~ P
= DTSR BT

\/ m;=0Am,=c0 < 90<0<180 ¥
pl' mZZOlezoo pl

(a) 6 = 90°. (b) 90° < 6 < 180°

() 0° < 6 < 90°

Figura 3.4: Aproximacioén de la curva semi-circular.

el vector posicion del centro de la circunferencia, y r es el radio. Por lo tanto,
la interseccion de los dos sistemas se conecta, a partir de:

(? i — c>2 = 2 (3.19)
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Cuadro 3.1: Condiciones del entorno de vuelo de prueba para el UAV.

cInit [39.4207, —0.4231,270] | [° dec.]

cGoal [39.4457,—0.4337,180] | [° dec.]
Dimensiones UAV [2.4,17.45,0.42] [m]
radios de curvatura 33 [rad]

velocidad de vuelo 18.16 [m/s]

cabeceo + 21 [° dec.]

alabeo + 21 [° dec.]

Por lo tanto, las posibles soluciones se definen como:

3)

To=d+(4xVAT—B).
A= (?—7) A (3.20)
B=(#+—rt-2d.7)

donde, B determina los posibles puntos de interseccioén entre las rectas (r Ly, 7 Ls)

y la nueva circunferencia cE.

El proceso completo describe la curva en un plano (z, y); sin embargo, la curva con-
tenida en el plano (z, z) se completa al replicar el proceso descrito, con la condiciéon

tnica de longitud idéntica en el plano (z,y).

3.4 Experimentosy resultados

La tabla 3.1 describe las condiciones del entorno 3D, donde cInit representa el punto
de partida y cGoal es el punto de meta del UAV, descritos en términos de latitud
y longitud. El tamafo completo del entorno en metros es [1180, 2789, 300][m] . Por
otro lado, es importante destacar que los parametros de altitud son relevantes para

asegurar un vuelo por completo 3D.

A partir del entorno descrito, se ha realizado una modificado, ubicando diversos
obstaculos estéticos en diferentes lugares. La tabla 3.2 muestra la ubicacién especi-
ficada de cada obstaculo. La columna [obs] muestra el nimero de obstaculos en la

escena, la columna [Ubicacién] muestra la ubicacion geodésica de cada obstaculo y la
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columna [Dimensiones] muestra las caracteristicas dimensionales de los obstaculos.

Cuadro 3.2: Obstaculos, caracteristicas y ubicaciones.

Ubicacion Dimensiones

# | obs lat.°dec lon.°dec alt.[m] | (x,y,z)[m]
1 1 |39.4332 —0.4284 0 [13,26,30]
5 1 | 39.4362 —0.4269 150 [11,22,35]
2 39.4302 —0.4314 150 [22,22,30]

1 | 39.4359 —0.4257 100 [6, 6, 20]

5 2 | 394293 —0.4323 200 [6, 6, 20]
3 | 39.4287 —0.4266 130 [13,13,30]
4 | 39.4332 —0.4284 120 [20, 20, 60]

3.4.1 Planificacion de trayectorias

A partir del entorno descrito, se ha realizado una modificacién, ubicando diversos
obstaculos estéticos en diferentes lugares. La tabla 3.3, muestra la ubicacién especi-
ficada de cada obstaculo.La columna [obs] muestra el numero de obstaculos en la
escena, la columna [Ubicaciéon] muestra la ubicacién geodésica de cada obstaculo y
la columna [Dimensiones] muestra las caracteristicas dimensionales de los obstacu-
los.

Cuadro 3.3: Resultados de los Planificadores.

escena | Iteraciones Distancia Vértices P;
[km]
1 260 3.663 250 89
RRT 2 368 3.684 350 90
3 192 3.585 189 87
1 1016 3.369 378 19
MACD 2 616 3.259 336 13
3 808 3.298 414 21

Entonces, a partir de los resultados producidos por el planificador MACD, en la
Figura 15 se muestra los resultados de la trayectoria en la escena 2, Especificamente,

el literal a muestra una vista 3D. Las vistas laterales se muestran en los literales b
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y c. De esta forma, este conjunto de resultados se utiliza para evaluar las curvas

analizadas en la seccién 3.3.

Asumiendo velocidades y aceleraciones constantes, la variaciéon de p se produce a
partir del d&ngulo resultante del calculo de cAct y cNext, donde, cAct es el punto teori-
coreal del UAV enla curvay cNext estd determinado por el punto dela curva. En esta
instancia, se ha aplicado el algoritmo De Boore para evaluar las splines de diferentes
6rdenes, complementando una comparacién con la curva semicircular descrita en la

seccion 3.3.2.

2500 100(C

2000

800

1500

600

1000 400
Y [metros] 500 0 O 200 X [metros]

(a) Vista 3D (—45, 36).

A 300
2500 / A
250t 1 1
2000 ///
) — 200} Y
£ oo = ¢ == U
£ / g 150
> | r— 1 <
1000 —— /j N 100}
—
500 -
a/
0 0
0 200 400 600 800 1000 0 200 400 600 _ 800 1000
X [metros] X[metros]
(b) Vista (z,y). (c) Vista (y, z).

Figura 3.5: Resultados del Planificador de trayectorias MACD.

La Figura 16 muestra las curvas finales construidas mediante la metodologia des-

crita. Donde, la Figura 16a y 16b muestran las vistas laterales de los planos (z,y) y
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(x, z). Los puntos rojos son los P;, la linea azul es la curva semicircular, las lineas
amarilla, verde y naranja describen el algoritmo de De Boore de orden diferente. Por
otro lado, la figura 16c muestra una ampliacién de la parte superior derecha de la
figura 16b, y visualiza los puntos de control py, ps, p3, p4 ¥ ps. Finalmente, la circun-
ferencia negra punteada muestra el méximo p realizable por UAV en vuelo. De esta
forma, se evidencia que para los polinomios de De Boore de orden 3 y 4, se generan

aproximaciones en p, que superan la capacidad de maniobra del UAV.

Con el objetivo de comprobar la eficacia del metodo descrito, asi como los resultados
tedricos, se ha utilizado la herramienta Matlab/Simulink, y el simulador de vuelo
FlightGear [88].

Por otro lado, durante el vuelo se han recogido 186,121 muestras provenientes del
vuelo. Los resultados en variaciones de velocidades y aceleraciones tras finalizar la

trayectoria suave se muestran en los literales a y b de la Figura 17.

Las velocidades y aceleraciones mantienen su valor medio, lo que significa que las
maniobras ejecutadas por el UAV permanecen dentro de su rango de restriccion
de movilidad. Por ejemplo, en velocidad de avance horizontal [Vel.x], la media es

cercana a 18[m/s], lo que significa que el UAV mantiene un vuelo continuo.

3.5 Conclusiones

En este capitulo se ha desarrollado una propuesta de construccién de un planificador
de trayectorias suaves para UAV de ala fija, en un espacio euclidiano 3D. Asi, el
principal aporte ha sido la inclusiéon de restricciones y limites de curvatura en la

construccion de las trayectorias.

Dentro del campo de la planificacién de trayectorias, una reconstruccién discreta del
entorno ofrece una forma directa de llegar desde cInit hasta cGoal. Por lo tanto, si
los P; producidos por los planificadores arrojan la distancia adecuada, entonces, el

UAYV puede seguir la trayectoria suave final.

En resumen, antes de contruir curvas que sirvan como transiciéon hacia las trayectoria
suaves, es importante tomar en cuenta diferentes caracteristicas como restricciones

de maniobrabilidad del UAV. Este enfoque brinda apoyo en la trazabilidad, veloci-
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Figura 3.6: Construccién de curvas, desde los P1, en la escena 2.
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Seguimiento de Velocidad. Seguimiento de aceleracion.
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Velocidades lineales. Aceleraciones lineales.
(a) Velocidad angular media. (b) Acceleracién angular media.

Figura 3.7: Ratio UAV de velocidades y aceleraciones en vuelo.

dades constantes y un vuelo continuo, al momento de su implementacién y pruebas,

lo que significa la posibilidad de incremento en el tiempo de vuelo del UAV.
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04

Optimizacion multiobjetivo para
la construccion de Trayectorias
suaves 3D

RESUMEN

Este capitulo propone una arquitectura para la construcciéon de trayectorias de vuelo
suave 3D para vehiculos aéreos no tripulados (UAV) de ala fija. El objetivo es deter-
minar la trayectoria de vuelo factible, minimizando el esfuerzo de giro, partiendo de
un conjunto de puntos de control en el espacio 3D. A partir de los puntos de control
definidos y las restricciones de movimiento del UAYV, se ha construido una trayecto-
ria que combina un conjunto de segmentos rectilineos y segmentos de curvas esféri-
cas. Esta metodologia conlleva la posibilidad de infinitas soluciones para la construc-
cién de la trayectoria final. Por este motivo, implica también un problema de optimi-
zacion multi-objetivo (MOP) que logre maximizar de forma independiente cada uno
de los radios de giro de la trayectoria. Finalmente, los resultados se contrastan a
través de simulaciones por medio de MATLAB, Simulink y FlightGear.



4.1 Introduccion

La rama tecnolégica de los UAV experimenta un desarrollo constante y vertiginoso
en diversos campos, especialmente en lo relacionado con nuevas técnicas de nave-
gacion y guiado. Esta evolucion continua responde a nuevos desafios que plantean

las aplicaciones reales [89, 90, 91].

Es importante destacar que el problema mas comun en la determinacion de trayec-
torias 3D de vuelo suave es la consideracion de las restricciones intrinsecas del UAV.
Por lo tanto, la no inclusién de las restricciones cinematicas y/o dindmicas del UAV
al momento de abordar el problema de planificacién de trayectorias puede generar
soluciones no viables que imposibiliten que el UAV complete una trayectoria de for-
ma satisfactoria. Sin embargo, incluir en el disefio todas las restricciones del UAV
en la fase de célculo puede causar problemas de optimizacién muy complejos, sin

solucién tnica y con costes computacionales muy elevados.

Este capitulo se centra en la generacién de trayectorias suaves, navegables por UAV
de ala fija. Debido a las limitaciones no-holonémicas de los UAV de ala fija, el obje-
tivo es crear una curva tridimensional suave desde un punto inicial hasta un punto
objetivo, a través del espacio euclidiano 3D con o sin obstaculos. Para lograr este
objetivo, es esencial definir una trayectoria factible que minimice el esfuerzo de giro
del vuelo y la distancia recorrida.

El conjunto de P; que definen el espacio libre de colisiones se calcula utilizando plani-
ficadores de trayectorias especificos, ya sean basados en el muestreo del entorno con-
tinuo o en el discreto. Algunos ejemplos de estas metodologias son el arbol aleatorio
de exploraciéon rapida (RRT) [92, 93, 94, 95]; las hojas de ruta probabilisticas (PRM)
[96, 97, 98, 99, 100]; planificadores heuristicos (Algoritmos genéticos GA) [101, 102]);
inteligencia de enjambre [103, 104, 105, 106]; l6gica difusa [107, 108]; diagramas de
Voronoi [109, 110, 111]; potencial artificial [112, 113, 114, 115]; o la descomposiciéon
celular adaptativa modificada con recompensa recursiva (RR-MACD) [116].

Las técnicas mencionadas, abordan el problema estandar de la planificacion de tra-
yectorias, construyendo trayectorias a trozos, ya sea en 2D o 3D. Estos métodos pue-
den proporcionar trayectorias 6ptimas o casi 6ptimas; sin embargo, no pueden ga-
rantizar la suavidad y la continuidad en la trayectoria, lo que podria dificultar el
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guiado del UAV a través de las trayectorias. Ademads, estas técnicas no incorporan
de forma directa las diferentes restricciones operativas del UAV y del entorno. Por lo
tanto, este capitulo propone una metodologia para definir trayectorias viables, sua-
ves y navegables por UAV no-holonémicos, en las que se incluye las restricciones

cinematicas operativas del sistema.

Como punto de partida se determina un conjunto de puntos 3D libres de colisién
Stree, @ partir de una planificacion de trayectoria 3D, con los que se construye un
conjunto ordenado de rectas que definen una primera trayectoria. Dicha trayectoria
es posteriormente suavizada, con el objetivo de incorporar la viabilidad y las res-
tricciones del UAV. Las limitaciones del UAV se centran en su capacidad de giro
horizontal y vertical. Por lo tanto, para que el UAV complete una secuencia de giros
a una velocidad definida, debe determinar su radio de giro minimo Rp. Si el radio de
giro es demasiado pequefio, el UAV perdera la trayectoria; sin embargo, si el radio

de giro aumenta, el UAV podra realizar maniobras con menos esfuerzo.

El objetivo es mantener los resultados del planificador 3D y, al mismo tiempo, ge-
nerar un conjunto finito de posibles curvas 3D que optimicen una curva 3D aproxi-
mada. Para ello, se plantea un problema de optimizaciéon multiobjetivo (MOP) [117].
Este planteamiento devuelve como resultado un conjunto de trayectorias que satisfa-
cen las restricciones del UAV, expresadas como soluciones dominantes en un frente
de Pareto de n -dimensiones [118].Por tltimo, se aplica criterios de selecciéon para
determinar la respuesta deseada desde el punto de vista de la curvatura x y la tor-
sion T de la curva 3D. Para verificar la funcionalidad de la metodologia, se compara
los resultados de las curvas construidas después de la optimizacién de la curva 3D

con una metodologia conocida de aproximacion tipo Bézier.

Este capitulo ha sido estructurado de la siguiente forma: en la seccién 4.2.1 se pre-
senta da un breve resumen de los conceptos MOP; en la la seccion 4.3 se presenta la
formulacion del problema; la seccién 4.4 detalla la metodologia completa para que
resuelve el problema, mientras que, la seccién 4.5 detalla los experimentos y resul-
tados de la planificacién de trayectorias suaves 3D; por tltimo, las conclusiones se

presentan en la seccion 4.6.
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4.2 Preliminares

4.2.1 Optimizacion multiobjetivo

El concepto de optimizacién multiobjetivo es de sencillo entendimiento, pues su pro-
posito principal es mejorar varios objetivos al mismo tiempo, considerando que op-
timizar varios objetivos en simultaneo es un problema de dificil alcance. Por lo tanto,
la optimizacién multiobjetivo intenta alcanzar un compromiso entre mejorar ciertos
criterios sin dafiar demasiado a los demas. Por ejemplo, si se busca minimizar costos
y maximizar calidad, en este problema, vale sefialar que es inevitable sacrificar algo
de calidad sin disminuir costos o viceversa.

Entonces, el problema de optimizacién (OP) intenta determinar una solucién que
represente el valor 6ptimo (minimo o maximo) de una funcién, como f : X — R,
donde, X es un vector de decision factible, tal que min(f(z)) : € X. Sin embargo,
para problemas donde es necesaria la optimizacién simultanea de mas de un objeti-
vo, es decir, optimizaciéon multiobjetivo (MOP), la funcion tiene forma f : = — RF,
donde, k > 2 es el nimero de objetivos. Por lo tanto, el vector de valores de la funciéon
objetivo se puede definir como f: X — R*, f(z) = (fi(x),..., fr(x))T.

Sin embargo, no suele haber una tnica X que genere un 6ptimo que satisfaga si-
multdneamente cada uno de los k objetivos, debido al conflicto entre los objetivos.
Entonces, el compromiso es encontrar una situacion en la que todos los objetivos
se encuentren satisfactoriamente dentro de unos parametros aceptables. La solucién
MOP conduce a puntos en los que cualquier mejora en un objetivo provoca la de-
gradacion de cualquier otro objetivo (uno o varios). Asi, estos puntos se representan
como un frente de Pareto [118], donde, todos los puntos del frente son igualmente
Optimos.

Por lo tanto, como se expresa en [117] el MOP puede expresarce como:

min J(0) = %éig)l[Jl(Q), Jo(0), ..., Jm(0)] 4.1)

63



sujeto a:

9(0) <0
h(6) =0 4.2)
eil S 91 S 87,u7Z - [17"'7n]7

donde, # € R™ es el vector de decision, D es el espacio de decision; J(¢) € R™ es
el vector objetivo; g(6) y h(¢) son los vectores de restriccién; y, por dltimo, 6, es el
limite superior y 6;, es el limite inferior del espacio de decision. En consecuencia, no
existe un tinico modelo 6ptimo; de hecho, hay un conjunto de soluciones 6ptimas con
diferentes compensaciones entre objetivos, entre las cuales ninguna es mejor que las
demés. Utilizando la definicién de dominancia, el conjunto Pareto ©p es el conjunto

de cada solucién no dominada.

De esta forma, se define la dominancia de Pareto en el caso de que una solucion 6*

domine a otra solucion 6?; es decir, (0* < 6?), si:
Vi€ B, J;(0Y) < Ji(6*) ATk € B Jp(0) < Jn(67), (4.3)

donde, J;(#),i € B :=[1...m] son los objetivos a optimizar. Por lo tanto, el conjunto

6ptimo de Pareto © p se define como:

Op=0eD|PdeD:0=<0

(4.4)
J(@p) = {J(@)‘@ S @P}7

donde, ©, y J(O,) son soluciones MOP. Sin embargo, en la mayoria de los casos son
inalcanzables porque ©p normalmente incluye soluciones infinitas. Por tanto, un
conjunto finito de ©% a partir de ©p y otro conjunto finito de J(©}) a partir de J(6,)
representan soluciones satisfactorias. A partir de J(©7), el tomador de decisiones

(DM) selecciona una solucién, de acuerdo con las preferencias establecidas.

Por ejemplo, un cierto punto del frente de Pareto que esta cerca del punto ideal (tam-

bién llamado punto utépico) J*¥, definido como:

Jiderh = L1 in(), s T min (6) ). (4.5)
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De ahi que una metodologia apropiada para caracterizar una MOP es el conocido
como algoritmo evolutivo multiobjetivo elitista (¢"—MOGA) [117],que realiza una
aproximacion distribuida al frente de Pareto. El objetivo de ¢~ M OG A es encontrar
una convergencia distribuida inteligente hacia un conjunto de e-Pareto; es decir, de-
terminar 0}, a lo largo del frente de Pareto J(©p). El espacio objetivo se divide en un
namero fijo de cajas. Por tanto, para cada dimensién : € B, se crean celdas n_boz; de
ancho ¢;, donde:

e = (JT = JM") In_box;

T = max Ji(6), T = min Ji(9).

(4.6)

Cada boz puede estar ocupada por una tnica solucién; por lo tanto, esta cuadricula

produce una distribucién inteligente y preserva la diversidad de J(©7},).

4.3 Definicion del problema

Se asume un espacio de trabajo W = R3, en el que es posible definir un conjunto de
obstaculos estéaticos o dindmicos como box terrestres o aéreas de diferentes dimen-
siones y ubicaciones (véase la Figura 18). En este espacio, el UAV en vuelo recibe
datos de su estaciéon de control (referentes a las condiciones ambientales) y a partir
de estos se realiza los célculos necesarios para determinar la mejor trayectoria sua-
ve 3D. Los datos relevantes incluyen el conjunto de puntos de control de vuelo 3D,
ordenados y libres de colisiones p = [P, ..., P5]. Ademas, las capacidades intrin-
secas de maniobra estdn determinadas por un radio de giro Rp (que determina las

limitaciones de giro vertical y horizontal) definido por su velocidad de vuelo.

El objetivo es partir de p;,:; y alcanzar p,.,; de tal forma que el UAV se aproxime a la
trayectoria directa marcada por la secuencia ordenada p. Por tanto, p = P;(x;, ys, ),
donde, (i = 1,...,n) ynesel conjunto total de espacios libres de colisiéon S,.., puede
expresarse como una secuencia de interpolacion discreta p = f(¢;) — R, donde, f(¢;)
es un conjunto de nodos en el espacio 3D. En consecuencia, es posible establecer un

conjunto de subintervalos (n—1) entre i = 1y i = n particionados en [a, b], definidos
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como:

[G, b] = [t17 t2] U [tZ) t3] U---u [tn—2> tn—l] U [tn—btn]
a:tIStQS"'Stn—lgtn:b

(4.7)
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Figura 4.1: Perspectiva del problema de vuelo en 3D para un UAV de ala fija. El
conjunto de puntos libres de colisiéon P; se representa mediante puntos naranja; la
linea negra describe la trayectoria discreta construida a partir de la planificaciéon
de trayectorias 3D; la linea verde discontinua representa la nueva trayectoria suave
optimizada, seguible por el UAV.

Una unién lineal entre pares de puntos resulta entonces en L : [a,b] — (z,y,2) ¥y
puede expresarse como un conjunto de rectas que marcan una trayectoria de vuelo
directo L(t) dividido en (n — 1) trozos.

Ll(t) 1 te [tl,tg]

Lg(t) tte [tg,tg]
L(t) = 4 w8

| Lat) : 1€ [t t]
L(t) = Ly(t) + La(t) + - - + La(2).

Por tanto, L(t) es una funcién de interpolacién lineal para la secuencia discreta p =
f(t;). Asimismo, entre los puntos p existe un subconjunto de (n — 1) rectas que unen

el inicio y el final de la trayectoria a lo largo del espacio de vuelo sin colisiones.

Sin embargo, un UAV no-holonémico no puede rea lizar todos los tipos de maniobra
definidas por L(t). En general, es deseable realizar maniobras con un radio de giro
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elevado. Por lo tanto, el enfoque presentado construye una trayectoria suave a partir
de p, que intenta evitar maniobras inadecuadas utilizando valores bajos de x y T,
incluidos dentro de los limites del giro de vuelo del UAV, al tiempo que se acerca a
la trayectoria L(t).

En la Figura 18, el conjunto de puntos libres de colisién P; se representa mediante
puntos naranja, la linea negra, denotada como L(¢) muestra la trayectoria directa
entre los puntos libres de colisién del entorno, y la linea verde punteada describe la
curva suave 3D, definida como C(t). La construccién de esta curva C(t) se realiza
uniendo un conjunto de segmentos que pueden ser de dos tipos: curvas esféricas S
(definidas a partir de una esfera de radio Rp) o rectas L. Asi, cada segmento S esta
definido por tres puntos continuos de p; mientras el segmento S tiene dos puntos
de tangencia, uno por cada par de rectas adyacentes L(¢) formadas por el conjunto
actual de tres puntos de p.

Por lo tanto, cada segmento S puede tener infinitas soluciones, con cada radio Rp,
dando lugar a diferentes puntos de tangencia en las rectas L(t). En consecuencia,
para cada segmento S se puede definir un conjunto infinito de esferas, que se enla-
zan a través de los segmentos L correspondientes o de otro segmento S. Obviamente,
este planteamiento del problema sugiere la existencia de infinitas combinaciones pa-
ra los segmentos S'y L.La forma de abordar esta problematica ha sido mediante el

planteamiento de un MOP.

4.4 Metodologia

En esta seccion se describe la metodologia propuesta para la generacion de trayec-
torias suaves en 3D. El método se divide en dos partes, primero se detalla como se

obtuvieron los segmentos S'y luego se describe la unién con los segmentos L.

4.4.1 Definicion del segmento esférico

Si se asume una trayectoria discreta definida como el conjunto de puntos libres de
colisiéon p = [P, ..., P,], a partir de la Figura 19 (puntos rojos), entonces, este conjun-

to de puntos se define como: P;(x;, y;, z;) : i = {1,...,n}, donde p;n;: = Pi(x;, yi, 2:) ¢

67



1= {1} ypgoal == Pl(mzu Yi, zi) t= {n}

El literal b de la Figura 19b muestra una esfera osculante (05) [119] definida con un
valor minimo Rp, situada entre el conjunto de los 3 primeros P; y tangente a las rectas
L(t) formadas entre el mismo conjunto de P;. Por tanto, teniendo en cuenta el nimero
de puntos libres de colisién p, el conjunto de esferas esiguala G; : i = {1,...,n—2},

como se muestra en el literal c de la figura 19c (vista ortogonal).

El literal b de figura 19b muestra el primer G| : i« = 1 situado entre los tres primeros
P,. Por lo tanto, es posible definir un plano 7; : ¢ = 1 entre los mismos puntos P;,
que tienen un angulo en relacién con la ubicacién del conjunto actual de P;, como
puede verse en la Figura 20a y 20b. La importancia de la definicién de este plano
viene dada por el hecho de que dentro del mismo esta contenido el centro de G; con
radio Rp.

De esta forma, existe una curva S; autocontenida (como una serie de puntos a lo
largo del espacio euclideo) sobre la superficie de la esfera y tangente a L(t) con ¢, y
t3 en el plano 7;, como se muestra en la Figura 20. Por tanto, el segmento de curva S;

(linea negra) se define como:

Sz(t) = [Sam Sya Sz]

Si, =xo+ Rp=*sin(y) x cos(p) | p1 > ¢ > @9 (4.9)
Si, = Yo + Rp xsin(v) x sin(p) A
S; = 29 + Rp * cos(v)) U <Y < .

donde, xo, yo y 2o representan el centro de G;. La curva S, realiza un recorrido hori-
zontal y vertical debido a los rangos angulares de ¢ y ¢, lo que implica variaciones
en los valores de x y 7 (éstos tienen una conexién directa con Rp y la longitud de

arco de 5;).

En consecuencia, si el valor de Rp crece, S; también crece, mientras que s y 7 dismi-

nuyen.

Es importante remarcar que si el plano 7; es paralelo al plano horizontal (z,y) del
entorno, entonces 7 = 0, lo que implica que los movimientos del UAV sean horizon-
tales. Del mismo modo, si 7; es paralelo al plano vertical (z, z) del entorno, entonces
k= 0.
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Figura 4.2: Problema de planificacién de trayectorias suave. Los puntos rojos repre-
sentan p, la linea azul es la trayectoria formada por rectas L(t). (a) Puntos libres de
colisién p. (b) Definicién de esfera con una relacién del minimo Rp. (c) Conjunto de
G sobre p. (d) Ejemplo de trayectoria suave 6ptima, con ~ y 7 optimizados en lineas
verdes discontinuas.

Sin embargo, antes de aplicar la ecuacion (4.9), es necesario determinar la situacion
de los puntos (¢, ¥o, 20), de modo que G; sea tangente en un punto de su superficie
con L(t), como se muestra en la Figura 19b en los puntos (¢, y ¢3). No obstante, se
debe considerar que existe un angulo entre cada par de L(t), y esto hace que G, se
acerque o se aleje de las rectas y sus puntos tangentes. El analisis geométrico aplicado
para llegar a una soluciéon 6ptima se detalla a continuacion.

En primer lugar, una direccién vectorial en el espacio puede definirse como 7 =
p—q : pAq € R3 Por tanto, partiendo de los datos conocidos p = [Py,..., P,],
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Figura 4.3: Trayectoria esférica suave, la linea negra muestra la curva en un segmen-
to S; a lo largo del plano 7;. Las lineas rojas muestran la unién desde el centro de
coordenadas de la esfera hasta los puntos de interseccién entre la esfera y el plano m;
resultante de la semicurva esférica. (a) Vista perpendicular al plano horizontal (z, y).
(b) Vista perpendicular al plano vertical (z, z).

tomando como ejemplo la Figura 19, donde se asume que los puntos iniciales libres
de colisién se definen como (P; : {i =1, ..., 3}), determinan un primer conjunto de

dos vectores como:

Ui=p—q:p="P, =P,
p—q:p (i+1), 4 (9) =1 (4.10)

71’ =p—q:p="Pui1),q =Py

De la misma forma, un vector perpendicular desde /; hasta ¥;, denotado como 77,
define el vector normal, tal que:

W= x Vs (4.11)

En consecuencia, la ecuacion paramétrica del plano 7; que contiene tres puntos se
define como:
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(
T = (y _py) * [ﬁ]
(

Z— Pz
- ) (4.12)
Pz = P(z’+1)m
Py = Py,
[ P2 = Piya).

Del mismo modo, la distancia euclidea definida entre dos puntos p y ¢ viene dada

por:

d(p,q) = /Y _(p—q)? (4.13)

Por lo tanto, se pueden expresar dos distancias como du; : p = Pi11),q = Py y
dvj : p = P11y, ¢ = P(i42). Por dltimo, el angulo entre ki y U ; se define por:
Ui X U
Z(ﬁm 71) = ¢1 = tan_l ”ﬁ%;—H (414:)
Por lo tanto, con la ecuacién (4.14) y conocido el valor de Rp, los puntos tangenciales

a las rectas L(t) pueden localizarse a una distancia definida como:

_ Rp
C9i/2

(4.15)

g;

De este modo, dos puntos espaciales definidos como pUi; y pUyg;, situados en la di-
reccion del vector 7i proporcionan P; =P, 1, y P, = P; y d(p, ¢) = du;; por tanto:

v =0;/d(p,q)
pUi; = (P; — Py) %y + P; (4.16)
pUg; = —(P; — Py) x v+ P,

Del mismo modo, se pueden definir dos puntos pV'¢; y pV g; en la direccién vectorial

s, siempre que P; = P14, Pg = P, 15 y d(p,q) = dv;, segin la ecuacion (4.16). De
modo que, la bisectriz perpendicular de pU+i; y pV'i; en el plano m; determina el centro
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de la esfera (o, Yo, 20). El literal a de la Figura 21a muestra la aplicacion de las ecua-
ciones (4.10), (4.11), que pueden repetirse a lo largo de los sucesivos puntos libres de
colisién p. Entre los centros de las esferas (¢, yo, 20) y 1los puntos de interseccién con
L(t) se encuentran los angulos de desplazamiento ¢ y ¢ de los segmentos .S;, como

puede verse en la Figura 20, donde pUi; =ty y pVi; = ts.

Es importante remarcar que, independientemente de la condicién angular producida
por el par de rectas L(¢) denotado en la ecuacion (4.14), el &ngulo formado entre los
puntos de interseccion sobre la esfera G;, vista desde su centro hacia la componente
vertical u horizontal, no supera en ningtn caso 90°; es decir, (0° < ¢ < 90°) y (0° <
W < 90°).

El proceso descrito muestra el anédlisis geométrico para la localizacién del conjunto
de esferas GG; definidas con radio constante Rp, como puede verse en la Figura 19c.
Ademas, existe un conjunto de cuatro segmentos S y otro conjunto de cinco seg-
mentos L, siendo los segmentos S los comprendidos por los intervalos [to, 3], [t4, 5],
[t6, t7] ¥ [ts, to], mientras que los segmentos L estan incluidos en los intervalos [t;, t2],
[ts,ta), [t5, 6], [t7,ts] ¥ [to, t10]. El Objetivo es aumentar el radio Rp en cada segmento,
de modo que se minimicen los valores de s y 7 a lo largo de la curva, aumentando

el radio Rp; en cada G;.

La solucién adoptada consiste en desplazar el punto de intersecciéon de cada esfera
G; en la direccion del segmento adyacente L(¢). En consecuencia, G; : i = 1, se
aproxima de forma simétrica a los intervalos ¢; y 4, entonces, GG; : i = 2 realiza la
correspondiente aproximacion a los intervalos t3 y ¢, y asi de forma sucesiva. Por
tanto, en la Figura 21b, los segmentos L(t) pueden verse adyacentes a G; : i = 1,

denotados como [t; = Py, ty = pUij, t3 = pVij, ty = pVgjl.
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(b)

Figura 4.4:El circulo negro discontinuo muestra la esfera osculante (05); la linea ver-
de es el radio de giro Rp;. (a) Situacién de GG; con radio de giro mi-nimo. (b) Situacién

de G; conradio de giro superior desplazado dentro de los limites [¢1, t5], definido por
el valor de 6;.
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Asi, entre los intervalos adyacentes [t1, t5] se define un vector U; =ty — 1, asociado

a este vector se establece un punto espacial p; definido por la ecuacién paramétrica:

La solucién adoptada consiste en desplazar el punto de interseccion de cada esfera
G, en la direccion del segmento adyacente L(¢). En consecuencia, G; : i = 1, se
aproxima de forma simétrica a los intervalos ¢; y 4, entonces, GG; : i = 2 realiza la
correspondiente aproximacién a los intervalos t3 y ¢, y asi de forma sucesiva. Por
tanto,en el literal b de la Figura 21b, los segmentos L(t) pueden verse adyacentes a

G, : 1 =1, denotados como [t; = Py, ty = pUij, t3 = pVij, ty = pVgjl.

Asi, entre los intervalos adyacentes [, t5] se define un vector 7,- =ty — t1, asociado

a este vector se establece un punto espacial p; definido por la ecuaciéon paramétrica:

Pi, = ta, +0; * 711
pi, =to, +0;x Uy, p,0<6;, <1 (4.17)
pi, =ty +0; % Uy,

donde, 0; define el punto espacial p; alo largo de u y dentro de los intervalos [t1, t5].
Por lo tanto, el valor de la distancia o; desde P, hasta p; se define segtin la ecuaciéon
en (4.13), siendo, p = P, 11y ¢ = pi+2. Se define un punto del espacio simbolico ¢; entre
los intervalos [t3,t4] con direccion UZ = t3 — t4 a la misma distancia ;. Entonces, o;
también posee un angulo ¢;, y segtin la ecuacion (4.14), es posible definir un nuevo
Rp; a partir de la ecuacion (4.15), la que tiene un valor de radio mayor. Por altimo, la
bisectriz perpendicular de p; y ¢; en el plano 7; determina el centro de G;(xo, Yo, 20)
(ver Figura 21b). Por lo tanto, el centro de G; definide la ecuacion (4.9) en el segmento
S; y sobre este segmento se determinan los valores inferiores de x y 7 segtn las
ecuaciones (2.6) y (2.10).

Definicion del problema multiobjetivo (MOP)

Dada la ecuacion (4.17), es importante sefialar que cualquier valor de ¢, entre Oy 1,
define un punto espacial entre el intervalo [t1, f3]. Del mismo modo, es importante
resaltar que dentro de los limites de 6;, existe un ntimero infinito de puntos espaciales
con un numero infinito de radios Rp; y su correspondiente namero infinito de G,

con los que se construye los correspondientes segmentos S;.
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Por este motivo, para obtener una solucién 6ptima, se ha resuelto el MOP mediante
algoritmos evolutivos basados en el concepto de e-dominancia [120, 121]. Para lo que
se ha definido variables de decision, condiciones iniciales del proceso, restricciones
del MOPy el vector indice a optimizar para representar el frente de Pareto. Entonces,
si se supone que el nimero de esferas G; es igual a m, y el nimero de objetivos
para cada G; igual a dos, entonces, J'%(0) = [J,(0), J2(0), ..., Joum(0)] representa
el vector de objetivos, donde, J; denota el i“*" objetivo. En consecuencia, JA =
min(x(6;), J? = min(7(6;)) € G; : [i = 1,...,m], donde, J! y JP dependen del
vector de variables de decision 6. Asumiendo D como un espacio de decisiéon dentro
de un subconjunto R”, siendo, § el vector de variables de decision compuesto por un
conjunto de §; paratodoi € 1 < i < m, con#; es [0, 1]”. En consecuencia, el problema

MOP puede enunciarse como:

L 1 7A B . .
rgé%l[‘]z (9>7 Jz (0)]1><(2*m)7 Viel <@ m. (418)
donde:
ga _ I15i(0) x ST@)|
’ 1S;@?
L SU0 - [8V(0) x SI(0)
’ [Si(t) x S (#)|I?
9:[02-]1xm, VZE].SZSTTL
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sujeto a:
Si, = xo+ Rp; *sin(y) * cos(p)
Si(t) =4 Si, = yo+ Bp; *sin(y) * sin(p) ,
S;. = 2o + Rp; * cos(v))
desde ec. (4.9)
Rp; = 0; % (¢;/2), desde ec. (4.15)

0; = \/Z(pz — P,11)?, desde ec. (4.13)
pi, = to, +0; % U,

Pi = § Pi, = lo, +0; % 7,-y , desde ec. (4.17)
pi, =ta, +0; % U,

0; € [0,1]”

<

En resumen, el objetivo es encontrar una curva suave 3D éptima que minimice k y 7
en cada una de las posibles S;. Es importante mencionar que las esferas adyacentes
G; pueden crecer una dentro de la otra, hasta que un maximo de ¢; € v = Piv1 € ul,
lo que implica una disminucion del conjunto total de segmentos, como describe la
Figura 19d, donde la linea verde discontinua muestra el conjunto de segmentos S;

pertenecientes a ;.

Un ejemplo de reconstruccion segiin la respuesta ©} puede verse en el literal b de
Figura 20b, donde la reconstruccién S se realiza en cuatro segmentos, definidos por
las fronteras [to, t3], [t4, 5], [t5,t6] ¥ [t7.ts]. Los segmentos S pertenecientes a C(t) se
definen segtin la ecuacién (4.9).

En contraste, y con referencia a la Figura 19d, los segmentos L estan definidos por el

resto de los limites, siendo tales limites [t;, t2], [t3, ta], [te, 7] ¥ [ts, to].

4.4.2 Definicion de segmentos de linea recta

Una trayectoria de tipo linea recta L puede describirse mediante dos puntos en el

espacio euclideo. El literal d de la Figura 19d muestra un ejemplo de un segmento

76



L definido por los puntos [t1, t5], donde, la direccién de la linea esta dada por la tra-
yectoria de vuelo del UAV. Por tanto, @ (ver la Figura 22) es un vector unitario que
apunta en la direccion de la orientacion deseada, y con d definido como la distancia
entre ¢, y ¢, segtin la ecuacién (4.13). Por tanto, los segmentos L se describiran, en

general, como:

Lt)y={rcR®:r=(t, —ty) %y —t}

(4.19)
—0<y<d

Finalmente, la interpolacion de S'y L construye una curva suave 3D final en el plano
(x,y, 2).

Figura 4.5: Segmento de linea recta.

4.5 Experimentosy resultados

MATLAB/Simulink y el simulador de vuelo flightGear han sido las herramientas
de apoyo para la presentacion de los resultados de simulacién por ordenador. En
este sentido, se ha realizado el analisis de cinco escenarios en el espacio 3D, toma-
dos a partir de la metodologia propuesta en [122]. La metodologia RR-MACD ofrece
dos conjuntos de resultados basados en las restricciones definidas. Los resultados
presentados en [122] se muestran de forma resumida en la Tabla 4.1, donde la pri-
mera columna muestra el ntimero de escenario. La segunda columna muestra el RR-
MACD con cuatro restricciones y el RR-MACD con 10 restricciones; en cambio, en la
tercera columna se muestran las condiciones para resolver el problema de planifica-

cién de trayectorias. Los puntos de control 3D reflejados en la Tabla 4.1, p,.(F) =~ p,
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son los puntos de partida para la construccién de curvas suaves 3D, ademas, del

analisis del método descrito en este capitulo.

Por dltimo, es importante sefialar que los algoritmos se han ejecutado en una CPU
Intel(R) Core(TM) i7 — 4790 a 3, 60 GHz (Fabricante: Gigabyte Technology Co., Ltd.,
Modelo: B85M — D3H) con 8Gb de RAM y S.0. Ubuntu Linux 16,04 LTS. Los algo-
ritmos se programaron en MATLAB version 9,4,0,813654 (R2018a).

Cuadro 4.1: Resultados de la planificacién de trayectorias 3D. El namero de espacios
colision libre se definen como Sy,.., mientras que el nimero de nodos 3D discretos
se denotan por p,(F) [122].

4 Restricciones 10 Restricciones

Env. RR-MACD RR-MACD
#Sfree #pm(F) #Sfree #pm(F)

#1 115 18 202 27

# 2 27 8 35 10

# 3 19 6 16 7

#4 11 6 51 10

#5 19 7 35 10

Es importante mencionar que las caracteristicas del UAV asumidas en los experi-
mentos han sido tomadas de [123], un estudio sobre el UAV de ala fija kadett 2400,
representado por seis estados (z, y, z, ¢, 0, 1)donde los tres primeros estados definen
el vector de posicion del sistema de coordenadas global del UAV situado en el ori-
gen de su centro de gravedad. Los tres altimos son los &ngulos de Euler de balanceo,
cabeceo y guifiada, respectivamente, que definen la orientacion del UAV.

Por altimo, las simulaciones han mostrado que el UAV mantiene un vuelo continuo
a una velocidad constante de 18[m/s], dentro de un radio de curvatura minimo esta-
blecido como Rp = 33[m], lo que muestra un comportamiento suave y sin maniobras

que puedan poner en peligro la integridad del avion.

Es importante recordar que, debido a que en el ejemplo especifico de analisis el na-
mero de puntos libres de colision p,(F') = [Py, ..., P, es superior a cinco, es necesa-
rio un método de visualizacion adecuado para la toma de decisiones en la solucién
tinal. Por ello, se ha utilizado el método de representacion gréafica denominado dia-
grama de niveles [124], que consiste en representar cada objetivo y cada parametro
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de disefio en diagramas separados, sincronizados con su eje y. La sincronizacién se

realiza con distancia normalizada de cada punto del frente de Pareto hasta punto
ideal.

4.5.1 Ejemplo aplicativo

Para representar los resultados visuales y numéricos de la Tabla 4.1, a continuacién,
se detalla los resultados para el entorno #3 provenientes de con RR-MACD con cua-
tro restricciones. Como en este ejemplo, el namero de F; es igual a 6, entonces, el
numero de criterios de decisiéon de la Ecuacion (4.18) — m = 4. Por lo tanto, existen
cuatro valores de x y cuatro valores de 7; es decir, ©; = (Ji1(01) = K1, J3(62) = ko,
J5(05) = ks, J7(04) = Ky, Jo(01) = 11, Ju(02) = T, Js(05) = 13y Js(6s) = 74), como
puede verse en la Figura 23.

Es importante destacar que la interpolacién de los segmentos S y L construye un
conjunto de curvas suaves 3D, y todas representan posibles soluciones. Por lo tan-
to, es necesario abordar una etapa de decision (DM) que seleccione una de ellas; es
decir, un punto en el frente de Pareto. En este trabajo se ha utilizado los criterios
de seleccion basados en la menor distancia hasta el punto ideal. Las Figuras 23 y
25 muestran en rojo, el punto seleccionado de J(©}) y ©, que ha sido seleccionado

utilizando la norma oo.

La Figura 24a muestra la construccién de la curva 3D suave C(t), mientras que la
Figura 24b muestra la mejor optimizacion en términos de x y 7, manteniendo una
media matemética baja para estas variables geométricas. Sin embargo, en algunos
casos particulares se detecta un aumento debido al cambio de direccién del vuelo. La
curva generada por Bézier B(t) se muestra como una linea amarilla, ademéas puede
verse una ruta mas directa entre el punto de cInit y cGoal. Sin embargo, esta curva
se acerca al obstaculo del fondo. Para solucionar esto, diferentes autores proponen
modificar los puntos de control p, o afiaden nuevos puntos dentro de los puntos
inicialmente definidos.

La Figura 26 muestra un conjunto de cuatro ejemplos adicionales a partir de la Tabla
4.1, donde se representa la funcionalidad del algoritmo. Es importante sefalar que

el namero de p fue diferente en cada experimento, asi como las altitudes, lo que ga-

79



rantiz6 la planificacién 3D. También es importante mencionar que el primer entorno
mostrado en el literal a de la Figura 26a posee caracteristicas dimensionales de vuelo

menores, por lo que el radio de giro en este ejemplo se fij6 en Rp = 3[m] con una
velocidad media de vuelo de 1, 7[m/s].

1.5 1.5
8 _8
= 1 =1
= >
5 0.5 A 0.5 .
0.005 0.015 0.025 0 0.005 0.01 0.015 0 0.01 0.02 0.03 0.04
J1(6h) J2(61) J3(0-)
1.5 1.5
_8 _38
=1 = 1
= >
0.5 . 0.5
-0.015 -0.01 -0.005 0.03 -2

J4(02)

0 0.01 0.02 0.03

J7(64) %1073

Figura 4.6:Representacion del frente de Pareto utilizando norma-oco. Los subindices
pares J representan los valores ~ en cada S;, mientras que los subindices impares J
representan los valores 7 en S;. Los J“ se muestran como circulos rojo solido.
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Con el objetivo de realizar una descripcién de los diferentes grupos de trayectorias
construidas por L(t), C(t) o B(t), en la Figura 26, y en las Tablas 4.2 y 4.3 se muestra
los resultados del vuelo desde el punto cInit hasta cGoal en términos de distancias, a
partir de uno de los resultados de cada entorno establecido en la Tabla 4.1. Se puede
observar que el conjunto de mayores distancias, correspondientes a la trayectoria
en forma de linea recta marcada por L(t), C(t) reduce la distancia en L(¢). Dado
que B(t) hace una aproximacién (como expresiéon matemadtica) entre el conjunto de
p de cada entorno, entonces, se contruye trayectorias mas corta. La columna “EAA
Error (metros)” muestra el error absoluto aproximado FAA = £ 3" | |A— B|, donde
A=L(t)y B=C(t) NB = B(t). Por lo tanto, los resultados de la columna “EAA
Error (metros)” muestra una mayor aproximacion a C(t), lo que se traduce en una
mejor evasion de obstaculos.

Del mismo modo, la Tabla 4.4 muestra un conjunto de resultados de los cinco entor-
nos analizados. Los promedios de x y 7 generados a lo largo de cada curva suave
muestran que B(t) supera a C(t). Sin embargo, en el primer entorno se produce una
colisién provocada por la curva B(t).

Cuadro 4.2: Distancias de vuelo. Muestra la distancia en me-tros en los puntos de
colision libre, cInit y cGoal marcados con p.

Distancia de vuelo [m]

L(t) C B(t)
#1 182929355  174.002834  148.911388
#2  1728.757868 1610.781941 1453.060601
#3 1863.391222 1721.505017 1526.055284
#4  1936.078758 1860.263202 1772.944453
#5 1873.814514 1839.965587 1743.723244

Finalmente, los resultados producidos por la simu-lacién de vuelo del UAV Kaddet
2400 realizada por medio de Matlab/Simulink/FlightGear, sobre el entorno #3 se
muestran en la Figura 27. Las coordenadas geodésicas de la Figura 27a se expresan
en grados decimales. En este ejemplo, el vuelo comienza con una altitud de 500,4
[m], y tras las maniobras realizadas por el UAV, alcanzan una nueva altitud de 603,1
[m]. El literal b de la Figura 27b muestra el modelo del UAV en vuelo.
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o Puntos libres de colision p
Interpolacién lineal L(t)
Curva suave 3D C(t)
Bézier B(t)
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Figura 4.7:Ejemplo de un entorno 3D con obstaculos. (a) Reconstruccién de trayec-
torias 3D. (b) Medias geométricas de las variables s y 7 de la trayectoria final.
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Figura 4.8: Representacion de los parametros 6ptimos de Pareto. Los objetivos més
cercanos a J*! se muestran en circulos rojos sélidos.

Cuadro 4.3: Error AEA [m]. Muestra el error medio en metros a lo largo de las tra-
yectorias.

EAA Error [m]

Env. L(t) vs C(t) L(t) vs B(t)
#1 0.622684 3.248545
#2  17.234613  41.453691
#3  14.600159  56.678212
#4 9.871725 36.617234
#5 9.891240 36.614752

Cuadro 4.4: Resultados promedio de x y 7 a lo largo de las curvas C(t) y B(t). La
columna “Colisiéon” de la trayectoria contra un obstaculo se muestra como positiva
(x), o negativa (0).

Curva K T Colision

#1 C() 0.157961 0.185973
B(t) 0.019513 0.092539
#2 C(H) 0.007138 0.159732
B(t) 0.001082 0.006652
#3 C() 0.004556 0.185806
B(t) 0.001068 0.004442
#4 C() 0.003445 0.574121
B(t)  0.000812 0.003332
#5 C() 0.004515 0.135183
B(t)  0.000643 0.004253

© 0|0 ©O|0 ©O|O0 O |X O
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- — - Puntos libres de colision
= Puntos libres de colision p 900, |— Interpolacion lineal L(t) r
— Interpolacién lineal L(t) Curva suave 3D C(t)
Curva suave 3D C(t) 800 Bézier B(t)
Bézier B(t)

(@)
° . Puntos libres de colision p
— Interpolacién lineal L(t) - —
\ » Puntos libres de colision p
\ (B:g?i/:rssu(%ve 3By 900 » |— Interpolacion lineal L(t)
L Curva suave 3D C(t)
800. Bézier B(t)

(©) (d)

Figura 4.9: Experimentos adicionales de entornos 3D. (a) (Tabla 4.1 Entorno #1.) Re-
presenta un entorno desestructurado con diferentes edificios, donde se aprecia una
colisién entre B(t) y un edificio (colisién marcada como una circunferencia de color
magenta). (b) (Tabla 4.1 Entorno #2.) Entorno 3D con dos obstaculos de diferentes
tamarios. (c) (Tabla 4.1 Entorno #4.) Entorno 3D con dos obstaculos de diferentes ta-
marfios. (d) (Tabla 4.1 Entorno #5.) Entorno 3D con tres pequefios obstaculos aéreos.
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Figura 4.10:Simulacién de vuelo. (a) Vuelo del UAYV, la linea azul es la trayectoria
calculada a partir del proceso descrito y la linea roja es la trayectoria real del UAV.
(b) Vista desde la perspectiva de vuelo del simulador.

4.6 Conclusionesy trabajos futuros

En este trabajo se describe un enfoque para la generacion de trayectorias suaves con-

tinuas 3D, construidas a partir de las limitaciones operativas del vehiculo aéreo no
tripulados de ala fija.
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El capitulo realiza una descripcién de la construccién de trayectorias suaves median-
te la definicion de dos tipos de segmentos. El primer tipo se define como segmentos
esféricos S, que garantizan un perfil continuo y de curvatura minima. El segundo ti-
po se define como segmentos L y se trata de aquellos que se conectan generalmente
con S.

Para obtener los valores numéricos de los parametros de la trayectoria, se ha plantea-
dolaresolucién de un MOP,dado que el problema tiene infinitas soluciones factibles.
En la resolucion del MOP, durante la la etapa de DM, es esencial seleccionar el punto
deseado del conjunto Pareto de soluciones 6ptimas.

Es importante recordar que con métodos como las curvas clasicas Bézier o B-splines,
se puede definir el nimero de muestras a lo largo de la trayectoria. Sin embargo, la
distancia medida entre un punto y el siguiente no es la misma,de modo que la di-
ferencia puede ser grande. Este tipo de curvas son ttiles en entornos relativamente
sencillos con pocos obstaculos; sin embargo, a medida que crece el niimero de obs-
taculos, los puntos de control aumentan debido a la planificacion de la trayectoria.

En consecuencia, la construccién de la curva puede provocar colisiones.

El capitulo ha considerado las restricciones cineméticas del UAV. En este sentido,
una consideracion importante que puede mejorar la construccion de nuevas trayec-
torias es incrementar las variables matematicas como el consumo de energia o los
datos incompletos en entornos dindmicos.
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